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Documentation In A Software
Maintenance Environment

Abstract

Software has a limited lifetime of usefulness, because as existing software ages
support becomes more difficult. Major factors in determining when to replace
rather than maintain software are the cost of and to the time required to train new
personnel to provide maintenance support. A primary source of information in
training new personnel, making modification or repair easier, is accurate
documentation.

By providing automatic techniques to generate documentation of existing software,
the life-cycle of software may be extended through accurate information about the
current state of the software.

The objective of this effort was to explore and select methods of documentation that
automatically extract and display program logic from source code, thereby
extending the life-cycle of software. The domain of problems our research
examined involved looking into the various weaknesses and vulnerabilities of
software and documentation that ages.

“~
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Introduction

-
L]

There are two distinct classes of documentation that need to be provided with a
software package: user level documentation and system/internal documentation.

,-‘ )

User level documentation defines the scope of the problem solved, and how to use
the package. Typically this documentation is done to the degree that the user
community requires, and is not a substantial problem. Also, functional or user level
documentation does not change significantly over time, since users do not want to
relearn how to use their software; i.e, upward compatibility usually exists. Large
functional changes generally result in new user documentation, which then is not
changed significantly until another major revision.
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On the other hand, system or internal documentation can become a problem because
it details how the package solves the problem. These internal details may change o
significantly, without changing what the user sees or how the system is used. X

N e e ———— v —— = T =

, This research concentrates on the problem of documenting the internal mechanisms
of a package (from the production source code) and representing this detail to the
maintenance programmer for training and for verification of functional processes
as changes are made to the software. Documentation, as used in this report, is to be

understood as that documentation that is of an internal or systems nature rather than
P user level documentation.

Overview of the Problem

Internal documentation has historically had a low priority in a project, usually not h
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by design, but rather due to lack of time or other considerations. If other phases of " 7

. . . . . )

a project were poorly estimated, or the emphasis was to get it out the door before )

the competition makes it obsolete, the internal documentation is typically the effort "

that suffers. A
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Introduction

Even if documentation was done when the project was initially completed, over
time it inadequately defines the working or production system. People seldom
accept responsibility for updating documentation, hence documentation seldom
conforms to new changes. Internal documentation falls into disuse if maintainers
discover that they have been misled by inaccuracies or, worse, by not recognizing
the inaccuracies they place more programming flaws in the system.

Maintenance is more difficult as systems become larger. Large systems can become
too complex for one person to understand and team maintenance further
complicates the problem. Significant amounts of old software exist, much of it
written before structured programming, without the benefit of modern software
engineering techniques. This software often suffers from such maladies as
unstructured code, machine hardware dependencies, operating system
dependencies, and large amounts of suspected dead code. Performance and
maintenance efforts on these large systems are barely manageable, and tend to
become less manageable over time. Several generations of changes can even
transform what was a well defined structure into a confusing and error-filled
patchwork.

These problems may be unavoidable, and there are situations that make the
problems much more difficult to solve, e.g., external factors involving system
organization or available personnel. Size and system complexity can aggravate
software problems. Sensitivity of software to small modifications rapidly increases
with software size since large software systems have more interfaces and
exceptions, leading to effects that one person might not completely understand.
Effects begin to look organic, in that a software system can respond to a small
correction in one area with large compensations in other areas.

A further contribution to maintenance problems is that software developers prefer
to develop new software rather than maintain old software. Development
assignments are often reserved for those who have paid their dues and many
creative, highly skilled programmers have prejudices against maintenance
assignments.

v mm:vmv.vm“"\wr“




Automatic D ntation Generation

Generally, developers of new software are reluctant to maintain software for very
long after the product has been accepted by the end user. For these reasons, original
developers of the system are usually unavailable because they have moved on to
something new. The result is that maintenance programming is where most
programmers begin their careers. Less experienced programmers are more likely p)
to introduce program flaws, worsening the overall poor condition of an aging :
application.

Even if all these problems and vulnerabilities are avoidable, all software comes to
one of three ends:

« Modified for new or changed tasks

« Rewritten when modification is no longer considered cost effective

» Destroyed when no longer needed
Modifying programs is preferable to deleting or rewriting them as most of the
application need has been (or is perceived to have been) solved. The problem is:
how can the software life-cycle be extended so modification remains cost effective?

Our Motives

This company has interests in various areas closely related to software
development:

« Large commercial applications

» Documentation and diagnosis of large applications

e User libraries

b

« Languages; development, implementation, and compiler support
+ Integration of standard routines into current applications

» Aids for data usage evaluation
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! » Theory development for translators that convert algorithms to natura
language descriptions
o
> . .
N « Combat simulation models

In addition to training our programming personnel in the basic modeling, graphics
and user library software, we incorporate libraries written by others into existing
software. As an example of the need for maintainance documentation, a portion of
our business currently use combat simulation models originally developed in
FORTRAN by several different programmers over a period of several years. The
maintainance problem is compounded when the COMBIC and EOSAEL
atmospheric obscurants model from the Atmospheric Sciences Laboratory (ASL)
are integrated with several weapons effectiveness evaluation models. Knowing how
these routines work, without having to extensively read the source code, helps in
reducing the training time.

Users of models and other software systems may not be programmers. In many
_ cases it is useful to these users if they can examine the methods being used in the
- program to validate the results given by the model. Provided documentation of the
. program logic, in the form of diagrams and charts, these personnel can more
effectively participate in the design and implementation of the system they are

using.
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Automatic Documentation Generation

Approach

Our approach to automatically generating maintenance related documentation
consists of two aspects: selection of useful documentation methods for the
maintenance environment; and definition of a documentation language with an

initial implementation of a compiler for the documentation language and display
processors.

Our objective was to build a working documentation generator using existing
compiler technology and software engineering methods.

Our Research

This company was awarded a contract [1] to do basic research in automatic
documentation generation on existing maintenance intensive, software
environments.

The goal of our research is to investigate methods aiding software life-cycle
extension. Modification remains a cost effective alternative so long as it involves
less effort and expense than rewriting the software system. Maintainers can make
repairs in a more cost effective manner when provided adequate documentation,
and the software life-cycle may be extended by rejuvenating the software.

Also, techniques for extending the life of the software can be developed by

redocumenting software as it ages; delaying the time when modifications are no j
longer cost effective. These techniques then become tools, improving maintenance =]
efficiency, allowing software to age more gracefully. ’;

".-'. 'j'.]

Our investigation plan has been to: o

-

¢ Develop a docvmentation language, DL, that supports existing third °

generation languages (i.e. FORTRAN, Pascal and C) and the newer third "]

generation languages such as Ada

[1] Army Research Office Contract: DAAG29-85C-0026 ]

[2]JAda is a registered trademark of the U.S. Government (Ada Joint '
Program Office) 7
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» Investigate existing techniques of documentation and determine which
techniques are most suitable to the maintenance process

* Develop new techniques and algorithms for automatic documentation
generation

Project Scope

Research emphasis is on high level, sequential, algorithmic languages. Examples of
these are FORTRAN, C, Pascal, and Ada. Assembly languages were not considered
since a general solution across systems is impractical [3].

Goal directed programming languages, such as Prolog and Icon, are not being
considered as their use is limited. Parallel programming problems are also not
being considered since little software yet exists. These and other fourth generation
languages (4GL's) are too new, and the experience with maintenance of large
software systems in 4GL's is too limited to evaluate documentation requirements
for this class of languages. The radically different nature of 4GL's (from the third
generation languages like FORTRAN and COBOL) supports the suspicion that
substantially different maintenance documentation is required from that needed in
the third generation language environment.

Evaluation of existing documentation techniques was the initial task, since many
forms of documentation exist. Investigation revealed that while many helpful
techniques exist for the software development phase, there are not enough useful
documentation techniques for the maintenance phase.

Next, a DL was developed that was capable of representing a wide variety of
programming languages. Since the majority of in-house software is written in
FORTRAN and C, emphasis on handling those languages has been paramount, but
the approach has been left open-ended to allow for expansion of the automatic
documentation generation system to include other languages.

[3] Note: large degrees of machine/implementation dependency in higher
level languages are possible. FORTRAN serves as a case in point, but this
does not usually apply.
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mati mentation ration

The initial focus has been on development of automatic docuiaentation tools for
FORTRAN. Since our sponsors have large holdings of software written in
FORTRAN, and FORTRAN is still widely accepted for standard use, specifically
with currently developed software. There also exists a sufficient base of aging,
problem software in this language. A compiler for DL was developed to the point
that all constructions in FORTRAN and C were handled.

Since our tools are to eventually operate on software written in other languages
(Ada, C, COBOL, Pascal), the implementation strategy was necessarily open ended
allowing for incorporation of structured programming environments.
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Documentation Techniques

Large amounts of maintenance phase software were examined. Languages
represented in the sample were: FORTRAN, DIBOL, C, and BASIC. All
applications examined have existed for several years, and are constantly used and
updated.

Maintenance programmers were interviewed to help clarify the types of problems
occurring in the real-world maintenance environment. Also consulted were
members of our staff who work on FORTRAN programs. These programmers
range from entry level to research associates, and are in our informal maintenance
training program. Many of our new hires work on the large combat simulation
models, which are written in FORTRAN. There, they deal immediately with
problems in system complexity, system testing, and system modification.

Several standard documentation techniques were examined with a view to
usefulness in a maintenance environment. In general, it was found that most
techniques are not appropriate for the maintenance portion of the software life-
cycle. The primary reason for this is that there is a significant amount of detail
present in the actual production code.

Elimination of detail requires too much in the way of understanding the effect of the
code to avoid such things as the Turing Halting Problem. Mechanisms must be
developed to allow a human to manually eliminate the low level detail, thus making
possible documentation of an overview nature. The decision to document code at
the low level was made.

Existing Documentation Techniques Evaluation

The following published documentation techniques were evaluated from the
perspective of providing documentation in the maintenance environment:

* Pretty Printing

*  Warnier-Orr Diagrams




mentation Generation

Michael Jackson Diagrams
Flowcharts

Pseudocode / Structured English
Nassi-Shneiderman Charts
Action Diagrams

HOS Charts

Evaluations of each of these documentation techniques are given in Appendix A.

Software Maintenance Evaluation Results

The evaluation criteria used to evaluate suitability of documentation methods for
the maintenance environment were:

Overview of the system
Program architecture display
Detailed program logic

File and database structure

These methods have properties generally suitable by all our criteria:

» Warnier-Orr diagrams can graph program, system and data structure in
hierarchical format

Action diagrams are designed to show all details of an organization at all
levels

HOS charts can describe mathematically rigorous tasks regardless of task
size




TR Y

These methods are considered suitable by the criterion of detailed program logic.
They satisfy no other criteria.

» Nassi-Shneiderman charts
* Flowcharts
» Pseudocode / Structured English

Each is specialized for describing procedures, with different aspects of flexibility
and elegance. However, they all have considerable problems attempting to describe
anything large scale. Hence they are best only for describing the detailed program
logic of a single routine.

Tools Initially Selected

Research is being focused on a few tools for the initial development. Although not a
documentation technique, many requests were made for good cross references of
the code. The decision was made to include a cross-reference listing capability.
These conclusions were reached after research was completed on available tools,
and the initial tools selected were:

» Cross reference generation

Nassi-Shneiderman charts for documenting detailed program logic

Action diagrams for documentation and maintenance of overall
systems, programming, and data structures

11
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Automatic Documentation Generation

Applications Anticipated

Good documentation should provide an abstraction of the program at every level of
the program. These abstractions provide information useful to programmers and
analysts alike, depending on the level of detail desired and the code to be examined.
One way to envision this is to contemplate beginning with the individual blocks of
code and documenting, or abstracting, them. Then move up one level and abstract
all code blocks below. Continue moving up a level at a time, the documentation for
the current level being the abstraction of everything at the next lower level in the
program. When finished, there exists documentation for the entire program, and
an abstraction of the program, level by level.

These abstractions are of use to programmers, checking the individual operations
for errors, and to analysts, looking for correctness of the implementation of the
program design, assuming there was a design in the first place.

Of the tools selected for initial development, action diagrams and Nassi-
Shneiderman charts appear appropriate for abstracting various levels of program.
Action diagrams can provide a semi-pictorial representation of the documentation
tree structure. Nassi-Shneiderman charts provide a block-structured representation
of program structure and may not be appropriate for more than selected blocks of
code at a time.

Applications anticipated as useful extractions of relevant information from the
compiled DL include:
Cross reference generation
* A list of all identifiers with similar names, to check for typing
errors in languages like Fortran that allow variable usage without

a prior declaration.

» A list of assignments to variables declared to be of a different type,
in languages like C with weak type checking.

* A list of what subroutines are called by a selected piece of code,
useful for tracking the side effects of a given change.

12

.,A .{J

uh Yy SEN R

L4

-

ANr) B

P
[ R

YN,

o

A




, ! B0 Bl Bl b B Sl Yy - '
Lo N L} - - IR A L AR A L Pl L R L e R L AR

E Applications Anticipated

|

Action diagrams

< * An interactive system that would allow the user to supply an
v abstraction for a given piece of code, in order to see less detail
- and more the overall purpose of the code.
e

" * A documentation "tree", showing the various levels within the

program either execution order or lexical order.
| » An abstraction of a piece of code, consisting of the inputs, outputs,
8 and all data modified within that piece of code.
S
Nassi-Shneiderman charts

NN * Block-structure diagrams that provide a pictorial representation
. of a block of code. This is useful for programmers new to the
N language used, as well as programmers new to a given piece of
. . software.

N * An abstraction of a piece of code, consisting of the inputs, outputs,
"X and all data modified within that piece of code.

N Also useful would be a pictorial representation of the various data structures used in
the program. This is especially important in languages that employ data-hiding,
where there may be several levels of data abstraction to weave through before
grasping the actual structure involved.

%
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Automatic Documentation Generation

Documentation Language Requirements

l"( I5 l‘

DL provides notation capable of representing programs written in FORTRAN,
Pascal, C and eventually, Ada.

.‘.A.‘J

These languages (especially C, Ada and Pascal) support structured programming
techniques and are present on the current generation of systems. Additionally, they
are similar enough to easily combine into a language that can represent them all.

DL was required to represent programming constructions of several languages to i
include FORTRAN, Pascal, C and in the future, Ada. Specific needs were: block I
structure (localized declarations, scope of name bindings), standard data types, user
defined data types, aliasing, operator overloading, nested procedures/functions, and
encapsulation (packages).

'S

Block Structure
Each block defines an environment and definitions that are local to that
block, are bound to the block and inaccessible outside of the block. This
allows data hiding. Blocks may be named (as in Ada) or unnamed.

Standard Types O
Provisions of basic data types and data structuring allows the source <
language to be translated into DL. Although based on C, DL is different
from C in that several extensions were necessary. Basic data types include o
enumerations and scalar data (including character, signed/unsigned short N
integer, signed/unsigned long integer, float, double, complex, and dcuble
complex).

User Defined Types ST
Users may define structured types using structures (Pascal/Ada records). A BRI
special class of structure, the union, may be used to map several
declarations to the same space (Pascal/Ada variant records).

' f.',r.'.a

Aliasing
A typedef facility allows the user to create new names for new or existing
types. FORTRAN equivalences, another form of aliasing, 1s handled by
defining unions, which provide mapping several variable names to the same LA
storage locations.

14




< Documentation Language Requirements

Operator Overloading

Control over operator overloading is given to accommodate differences in
type promotion/demotion rules for different languages. The most common
overloading is for arithmetic operators like "+", "-", "*" and "/". In these
cases, the promotion of characters to short integers, short integers to long
integers, long to float, float to double, and double to complex are understood
so that expression result types are known. Consideration has been given to
allowing arbitrary user specified operators so that DL can accommodate
fully overloaded and user defined evaluation rules.

Function and Procedure Overloading
Overloading of function and procedure names is required for Ada but not
for FORTRAN, so work in allowing this form of overloading has been
deferred.

, Nested Procedures and Functions
Languages like Pascal and Ada allow nesting of procedures and functions.
.' This allows for controlling the scope (i.e. accessibility) to functions.

Encapsulation
Creation of modules (Ada packages) was considered, but is not implemented.
This will allow the developer of code to define interfaces to functions
' without giving direct access to the internal workings of the functions. Access
[ X : .
; to the exported functions, procedures and variables is controlled by the
module using struct-like construction, where the struct is the name of the
. package, and the members of the struct are the functions, procedures and
- variables of the module interface.

,.
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Implementation Strategy

Developing an open ended, extensible approach required designing a general
purpose documentation language, named DL, and developing a compiler for it.
Maintenance tool output generators and translators from specific programming
languages can then be developed, which use the information derived by the
compiler. The following sections present a conceptual overview of the
parser/documenter system. Appendix B presents the system-level implementation
of the system while Appendix C provides a detailed look at the internal symbol table
structures used in the parser/documenter.

Documentation Language

The initial definition of DL was chosen to be the X3J11 standard of the C
programming language. C provides an abstract representation which combines data
structures at their most primitive level, operators for these primitive structures,
and function/subroutine calls. Also, C has sufficient flexibility to represent itself
and higher level programming languages. C compilers are established on many
computers, and have nearly no special requirements for running on a specific
machine.

The new standard of C, developed by the ANSI X3J11 committee, contains
revisions addressing problems left unresolved by the older standard, as defined by
Kernighan and Ritchie. Translation programs convert software written in the
different programming languages and express them in DL. DL syntax is given in
Appendix D as a series of flowgraphs.

Dcecumentation Lau€uage Compiler

The DL compiler transforms DL source code into a symbol table specifically
developed to represent the complete set of semantics available in DL. This
transformation is reversible, since the complete set of semantics are preserved in
the transformation.
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Preprocessors for conversion of standard languages such as FORTRAN and Ada to
DL are planned which allow for support of large bodies of software currently in
maintenance.

Development is being done under 4.2bsd Unix running on a VAX 11/750. The
Unix environment provides a rich set of utilities that aid in the development of
compilers and preprocessors. Unix utilities employed were lex (for lexical
analysis), and yacc (for syntax analysis).

Regular expressions, representing the rokens of the goal language, are used by lex
to represent (i.e., tokenize) a language's lexical characteristics. Context-free
expressions representing a language’s syntax are used by yacc to generate an
LALR(1) parser (look ahead one token left to right). Both representations use
action code to perform semantic iinterpretations. The term action code refers to
the portions of the lex or yacc source designated to perform syntax directed
translation.

Description of lex

The input to lex consists of a table of regular expressions and corresponding
action code, which lex translates into a C source program. The resulting source
program is a software implementation of a deterministic finite-state automaton
(DFSA) that recognizes the regular expressions from the input stream, and executes
the program fragment to operate on the recognized text.

The DFSA is interpreted, rather than compiled, in order to save space. The
automaton interpreter directs the control flow, and the user is allowed to insert
additional declarations and statements, or to use external subroutines.

Ambiguous specifications are accepted, in which case lex recognizes the longest
possible match. If several matches are of equal length, then the first match is used.
User supplied action code is then executed and may further refine or reject the
match, or do other processing needed by the application. Although it is a very
useful tool, lex is not a complete language, but rather a recognizer generator that
creates a subroutine that processes all input, freeing the user from having to write
and rewrite lexical analyzers.

17




rﬂ'&"’". T T T P T e T T R N R R R T e T X T N R T R R T N F TN T IR IO NS WA

I
.‘.’lv

Automatic Documentation Generation

| By design, lex is particularly suited to integrate with the yacc parser generator;
! where lex performs the lexical analysis phase, and the parser recognizes syntactic
| elements of the language.

Description of yacc

Although it is called a compiler compiler, yacc is a very flexible and general tool 0
for describing the input expected by a computer program. The yacc user specifies R
the structures of the input, together with code to be invoked as each such structure is -
recognized. This input is converted by yacc into a subroutine that handles the input o
process; frequently, it is convenient and appropriate to have most of the flow of o
control in the user's application handled by this subroutine.

The parser subroutine produced by yacc calls the lexical analysis routine,
previously discussed, that returns the next basic input item, called a token. These
tokens are organized according to the input structure rules, called grammar rules; -
when one of these rules has been recognized, then user code supplied for this rule,
an action is invoked; actions have the ability to return values and make use of the
values of other actions.

The heart of the input specification is a collection of grammar rules. In our case the
grammar of the ANSI X3J11 C language was expressed using the yacc grammar
rules. When the input being read does not conform to the specifications, syntax .
errors are detected as early as is theoretically possible with a left-to-right scan. T

While yacc cannot handle all possible specifications, its power compares favorably
with similar systems. Moreover, the constructions which are difficult for yacc to
handle are also frequently difficult for human beings to handle.

NN RAARBANLY TSI | o

Actions that do not terminate a rule are actually handled by yacc by manufacturing ’
a new nonterminal symbol name, and a new rule matching this name to the empty ..
string. The interior action is the action triggered off by recognizing this added =N
rule. _ :.._'.
~ ‘::\
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Implementation Strategy

In our application, a data structure representing the parse tree is constructed in
memory, and transformations are applied to it before output is generated. Parse
trees are particularly easy to construct, given efficient routines to build and
maintain the tree structure desired.

The parser produced by yacc consists of a finite state machine with a stack. The
parser is also capable of reading and remembering the next input token (called the
look-ahead token). The current state is always the one on the top of the stack. The
states of the finite state machine are given small integer labels; initially, the machine
is in state 0, the stack contains only state 0, and no look-ahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and
error. A move of the parser is done as follows:

« Based on its current state, the parser decides whether it needs a look-
ahead token to decide what action shouid be done; if it needs one, and
does not have one, it calls the /ex entry function yylex to obtain the next
token

« Using the current state, and the look-ahead token if needed, the parser
decides on its next action, and carries it out; this may result in states being
pushed onto the stack, or popped off of the stack, and in the look-ahead
token being processed or left alone

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a look-ahead token. The look-ahead token is cleared
as a result of the shift. The reduce action keeps the stack from growing without
bounds. Reduce actions arc appropriate when the parser has seen the right hand side
of a grammar rule, and is prepared to announce that it has seen an instance of the
rule, replacing the right hand side by the left hand side. It may h: necessary to
consult the look-ahead token to decide whether to reduce, but usu~!lyv .' is not; in
fact, the default action is often a reduce action.

Reduce actions are associated with individual grammar rules. The reduce action
depends on the left hand symbol, and the number of symbols on the right hand side.
To reduce, first pop off the top n states from the stack (in general, the number of
states popped equals the number of symbols on the right side of the rule).

19
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Automatic Documentation Generation

In effect, these states were the ones put on the stack while recognizing the tokens
which no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the
rule. Using this uncovered state, and the symbol on the left side of the rule,
perform what is in effect a shift of the left side. A new state is obtained, pushed onto
the stack, and parsing continues. There are significant differences between the
processing of the left hand symbol and an ordinary shift of a token, however, so this
action is called a goto action. In particular, the look-ahead token is cleared by a
shift, and is not affected by a goto.

In effect, the reduce action turns back the clock in the parse, popping the states off
the stack to go back to the state where the right hand side of the rule was first seen.
The parser then behaves as if it had seen the left side at that time. If the right hand

side of the rule is empty, no states are popped off of the stack: the uncovered state is
in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and
values. When a rule is reduced, the code supplied with the rule is executed before
the stack is adjusted. In addition to the stack holding the states, another stack,
running in parallel with it, holds the values returned from the lexical analyzer and
the actions. When a shift takes place, the external variable value (supplied by the
lexical analyzer) is copied onto the value stack. After the return from the user code,
the reduction is carried out. When the goto action is done, the external variable is
copied onto the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification.
This action appears only when the look-ahead token is the end marker, and indicates
that the parser has successfully done its job. The error action, on the other hand,
represents a place where the parser can no longer continue parsing according to the
specification. The input tokens it has seen, together with the look-ahead token,
cannot be followed by anything that would result in a legal input. The parser
reports an error, and attempts to recover the situation and resume parsing.

It does this by selecting one of the valid steps wherever it has a choice. A rule
describing which choice to make in a given situation is called a disambiguating
rule. Two disambiguating rules are invoked by default by vacc:

20
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- « In a shift/reduce conflict, the default is to do the shift
E: e In a reduce/reduce conflict, the default is to reduce by the earlier
) grammar rule (in the input sequence)
- . _— . . o !
< The first rule implies that reductions are deferred whenever there is a choice, in )
favor of shifts. The second rule gives the user rather crude control over the
:' N behavior of the parser in this situation, but reduce/reduce conflicts should be
n avoided whenever possible.
.N.
W L
o
N
L
n
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Issues of Completeness

N AR

In defining Documentation Language (DL) it was necessary to examine all of the v
languages that we anticipated encountering. This set of languages included BASIC,
FORTRAN, Pascal, C and Ada. As previously stated, fourth generation and goal
directed evaluation languages were eliminated from concideration (e.g., Prolog and
Icon). .

DL must both represent the complete source language and facilitate generation of
documentation. Designing a language such as DL required analysis of both the
programming models of the source languages and the syntax of the language needed
to support those models.

????“:_ﬂ

Analysis of Languages

(] l' l.

Common elements in the languages under consideration include data structures,
routines (functions and procedures) and control of reference scope. Some of the
source languages did not necessarily require supporting all of these concepts. For
example, FORTRAN does not provide the minimal scoping rules (data access
control) provided by C, which is also less than that provided by Ada. In this case,
the most advanced form of data access control, that of Ada, must be used in DL in
order to have a complete representation. Investigation into representations showed :
that it was possible to represent BASIC, FORTRAN and C data structures using the -7

oty

PP P P
I T Py T PP

..............................................

more complex representations implemented in Ada.
Another issue is the semantics of blocks. For languages such as BASIC there are, '_l:
typically, no blocks. The bounds of a subroutine in BASIC are from the entry point ‘
referenced in the GOSUB until the RETURN(s). In many interpreted BASIC = o
implementations, there is no requirement that the RETURN appear lexically v
following the entry point. Essentially, a BASIC program is one large, possibly )
unstructured block. All data is accessible to all parts of the program logic. _’ ~_
FORTRAN, on the other hand, has a limited repertoire of block capabilities. :‘
SUBROUTINE and FUNCTION blocks are distinct "capsules” that have a visible N
entry point(s). Data may be put in capsules using COMMON blocks, but access to =3
data within the COMMON is uncontrolled, allowing unrestricted data conversions. N
9
22 Y
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Blocks are "named" in that the routine or COMMON has a name. FORTRAN does
not provide nesting of blocks, so the requirement for FORTRAN is flat, one level
blocks. Languages such as C and Pascal allow nesting of blocks. Although different
in detail, the semantics for C and Pascal are similar. Both allow for definition of
procedures and functions, as with FORTRAN. Pascal allows specification of
procedures and functions within (and local to) procedures and functions. In each of
these local procedures and functions, declaration of local variables may occur.
s These variables are private to the declaring routine, and those routines within it
< (identifier scoping rules).
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NN Similarly, C allows declarations of variables at the beginning of any block,
N including function-internal blocks. These private variables are accessible only to
b statements in that block, and generally are created and destroyed on entry to and
NI exit from the block. To handle these block requirements (both C and Pascal), it was

determined that each block contain all local declarations in that block. The only
difference between a procedure/function and an unnamed block in C is the absence
of a name, since parameters are optional.

- . Ada allows for a merging of the C and Pascal concepts in that blocks like those in C

may be named, and have local declarations. Procedures and functions may be
nested and have local declarations. These named blocks are executed just like
regular blocks (that is control "falls” into the named block), but an extra measure of
N name scope control is allowed.

»

l.. {.

Data Structures

Adequacy of any documentation provided by an automatic documentation generator
is dependent on the level of detail retained from processing the source program. If
the internal intermediate representation of the original source is incomplete, then
the documentation process will create inferior documentation.

¥ To protect against the problem of insufficient detail, hand drawn charts were
4 created for significant sample code blocks. From these charts, prototype data
pooN structures were created for representing the sample code.

N
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Automatic Documentation Generation

Incorporated in the initial design was the notion that any structure built by the DL
compiler should be independently verifiable as to the correctness of the internal
linkages. A "tagged memory" scheme was developed such that each element of the
compiled structure described itself (in form) so that it is possible to verify that all
pointers point to objects of the type they are intended to reference. The general
exception to this tagged memory model is that of character strings, in which are
stored identifier names, descriptions and in-line comments.

A iimited set of common structures were developed to minimize the number of
storage managment routines needed. For example, a generic table structure was
implemented so that a table can have a dynamic number of elements, all elements
being of a specific type. In this way a single routine can add an element to any table,
and the table manager is able to verify that the element is of the appropriate type for
that table.

Operand Structure

Each structure is called an operand, and each operand is assigned a unique
operand type. All operands have a common prefix tag field containing the type of
the operand, the block to which the operand is assigned, the table to which the
operand is assigned, and the table entry number at which this operand is assigned. A
detailed definition of all of these stuctures appear in Appendix C. DL currently has
operand types block, code, list, mem, init, quad, ref, symbol, table, type, val, and
expr, used as follows:

OT_BLOCK

All code and local definitions to a block are stored in an OT_BLOCK
operand. A base block anchoring the parse tree makes the entire
parse tree available to a documentation program.

e
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OT_CODE

Executable statement operations (quadruples) are kept together by
code statement, in code tables. Sequential processing of the
quadruples, in the order of the code results in the replication of the
execution order of the input source.

OT_LIST

List operands maintain appropriate association (grouping or
sequence) of operands as they appeared in the input source.

OT_MEM

Members of data aggregates and unions (both of which are type

operands) describe the data to be stored in each field of the aggregate
or union.

OT_INIT

Initializers for data are stored in init operands. The values associated
with the init operands are val operands.

OT_VAL

Values for init operands appear in val operands. These are used for
static and dynamic initialization of variables.

OT_QUAD

Execution operators are stored in quadruples, which have an operator,

up to three operands that the operator uses, and a resulting type
operand.

25




. - B ” . - v . N M L) 3
0 e A st it 1 0a's o 0.0 Tt TN T OO 8000 10¢ 68 e ot 000 ol Gut 020 Ua@ Bof sol Sap 2} tog ot kiataSatota kbl S et e tah Sl ahtalaty

Automatic Documentation Generation

E
]
Y
(
;
’l
!
*.
E
f
y
:

OT_REF ~
References are kept in ref operands. References include such things ‘ l
as source file, line number, and reference class. ~

Z

OT_SYMBOL -

A symbol operand is used to describe variables, function and .
procedure descriptors, aggregates, unions and enumerations. In the o
cases of aggregates, unions and enumerations, there may be a name
associated with the entry to allow later references. Note that the

seperation of symbol operands into variable, aggregate, union and >
enumerator is done by noting which table the symbol appears in. ;
OT_TABLE ]
A table of operands is a variable array of operands, all of the same - 3
operand type.
OT_TYPE N
| Data type information is captured in the type operand, which has '
several variants, depending on the basic type declaration. <3

(iAo s s un gl at

OT_EXPR

4

* This entry is used to keep track of the current type within expression
evaluation.

Lam an an o o

26

T T P R SR S - e
.......................

RN LR S RO AP . e T . . - e e et e e e
r PR I T A I e e A R SR S, T T P O R T R R Sy s - 2




N es of leten
- E Block Structure
N The primary structure that describes the source is the block. Each block is given a

N unique block identifier number so that the linkage to all elements belonging to that

" block can be verified. If the block has a name (function, procedure, or Ada named
block) the name is also recorded. A prototype function block represents the
interface information of a function whose complete formal definition is supplied
elsewhere in the input source.

When a formal definition of a block has been completed, then the function block is
- no longer a prototype. The function block is then LOCKED from further
R modification. This allows the DL compiler to diagnose attempts to multiply define
routines.

Formal parameters, if they exist, are recorded in the block so that checks can be
made regarding the appropriateness of a call to the routine. If the block is a
function, the return type of the function is also indicated allowing recognition of
inappropriate assignments or uses of the return result.

. n The currently defined block types in DL are:

= BT_BASE

An initial block is allocated prior to any source being processed. All
external definitions and outermost level routines appear in the base
A block. For BASIC, FORTRAN and C, all procedures and functions

are found in this level. For Pascal and Ada, the main procedure and all
external definitions appear in this block.

BT_NONE
_ The block type has not been assigned. During the compile, the initial
< type of a block is none. Prior to entering a block into a table, a
SR block type other than none is assigned to the block, else an error is
« diagnosed.
~ ¢
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BT_DATA

Initialized data specifications are stored in data blocks. This is where
FORTRAN "BLOCK DATA" is stored. FORTRAN "COMMON"
blocks are data blocks that have the name of the COMMON they
represent.

BT_SUBR

Nameless procedures are stored in subr blocks. A nameless
procedure contains declarations and code that are stored local to the
subr block, and may contain other blocks. Nameless procedures are
activated by fall-through, and do not return a value.

BT_FUNC

Completely defined subprograms are stored in func blocks. A
subprogram is given a name, optional return value type, and optional
formal parameters. A subprogram contains declarations and code that
are stored local to the func block, and may contain other blocks.
Subprograms are activated by invokation. A function is a subprogram
that returns a value, a procedure is a program that does not.

BT_PROTO

The proto block type is used for the definition of a prototype. A
prototype describes an incompletely defined function or procedure. A
prototype does not yet contain any code but does describe the name of
the block, and optionally, the number and types of parameters to the
function or procedure.
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Block Table Structures

Each block has a group of associated rables. Each table has the current number
of allocated and activated entries in the table. All entries in the table must be of the
prescribed type that was specified when the rable was created. The varieties of
tables include:

TBL_AGG
This tabie type holds aggregates of data, such as a C structure or
Pascal /Ada record. An aggregate has at least one member element.
Local struct definitions are stored in the currently active block, when

the definition is encountered. Each member of an aggregate table is
assigned storage following the previous member in the aggregate.

TBL_UNION
Unions differ from aggregates in that each member in the union

table overlays (is given the same storage offset) the previous union
member.

TBL_MEM

Mem tables define member fields within the structure of aggregates
or unions.

TBL_BLOCK

Blocks that are local to the currently active block are stored in the
block table. These block table entries may be any of the allowed
block types, with the convention that a base block only occurs at the
base of the internal representation. Each entry in the block rable is a
recursive data structure of blocks.

.r\j
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TBL_CODE

All executable statements are represented by code rable entries.
Code is itself a linked list of quadruples (quad).

TBL_QUAD

Executable instructions are stored in quadruples, which consist of an
operator, up to three operands (2 sources/1 destination, or 3 sources),
and a result type operand.

TBL_ENUM

Enumeration definitions local to the current block are stored in the
enum table. Each enum has at least one enumerator following in
the enumeration definition from the input source.

TBL_ENUMERATOR

A single enumerator is assigned an entry in the enumerator table. A
set of enumerators define the range of valid values to which elements
of the enum type can be assigned.

TBL_TYPE

Local type definitions are stored in the type rable. Several pre-
defined types are installed in the base block that allow the user to
reference all of the standard supplied types of BASIC, C, FORTRAN,
Pascal and Ada.
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Issues of Completeness

TBL_VAR

Local variable definitions are stored in the var table, with optionally
specified associated initialization values. All variables are associated
with a type entry, that may be in the current block or any of the
active blocks (determined by lexical scope rules).

TBL_REF

Lexical occurance and symbolic references to all elements are stored
in ref table entries. The ref table in a block indicates the locations
that referenced this currently active block.

TBL_LABEL

A label table indicates the labels (symbolic addresses) that occur in the
block. These labels are referenced by the unconditional goto
statements in BASIC, C, FORTRAN, Pascal and Ada.

Symbol Table Connectivity

Each block, except for the base block must be owned by another block. In this
way, internal compiler failures such as attempting to assign ownership of a block
to more than one block are detected. This eliminates what would otherwise appear
as data dependent errors.

In the current implementation a set of simple types is known by the compiler. This
set of types includes those necessary for FORTRAN and C. These two languages
were chosen because initial development of the compiler was in C, and since we
have a large body of software written in FORTRAN. C has a relatively esoteric and
sometimes obscure syntax for declaring complex types. The solution of the
problems presented by the C syntax was vital to understanding how all data types
could be described.
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I )

Representation of the scalar types boolean, character, short, int, long, float,
double, complex, double complex and void are simple types in that there is a fixed )
allocation for elements of these types. These types are in the set of types known to -
the compiler. As in C, DL allows a default typing of functions and procedures,
called the defaulr type. This soft type is aliased to the int type and requires the
same storage as an int.

Types that involve addresses include near pointers, far pointers, arrays, functions
and aliases. Both near and far pointers are treated as dimensionless arrays. An alias o
provides a linkage between two items of the same type, but separated by
declarations. Aliases also provide a mechanism for coersion of types and type
equivalences.
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Structured types aggregate and union are represented by a table structure that
orders their members. Each member of a aggregate or union is represented by a
mem which also has a type associated with it. The same table structure also allows
for storing enumerators belonging to an enumeration.

Labels into code are represented with a label type entry. Upon encountering the

foward reference to a label, an arbitrary label is created local to the enclosing b
‘ function block, with the foward reference stored as a pointer in the arbitrary label. 5
| When the label is actually encountered, this arbitrary label is moved to the correct
| block. DL then "backpatches" each foward reference through the appropriate
! pointer in the corrected label.

| During the compilation of the input source, all diagnostic messages are stored in the
parse tree at the point where the diagnostic is generated. This feature allows for the
compiler to mark all declarations with notification messages as it runs, and then
passes this information to the post-processors for further evaluation.
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y DL Representation Example

DL Representation Example

The following example is presented to clarify the relationships between data
structures in the output of the DL compiler. The example program chosen is

;> factorial, allowing the reader to focus on the data structures, without being
! concerned with the details of the program. This simple example does not illustrate

', all features of DL, but does demonstrate the most common data structures.

;X

| The reader should be aware that the picture and listing of tables are greatly
. abbreviated. The intent was to show connectivity rather than showing all of the
= details. Pruned from the example were all empty tables, and some of the less

) interesting pointers, such as parent pointers from the various blocks. For a
L complete representation, see Appendix E.

printf (char*, ...);

function long factorial (i)

e .
' - LRkl
e s
- st

long i;
{
if ()
return 1;
else
i< return (i * factorial (i - 1));
) }
f function main ()
{
- v printf ("the factorial of 10 is%Ild\n",
- factorial (10));
}
o The block index represents the order in which the major programming units,
L known as blocks, are represented in the program. The block level denotes the
" degree of nesting a block has. The value 0 represents the outermost level, higher
) levels indicate deeper nesting.
K
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Automatic Documentation Generation

Factorial Example Data Structures

BLOCK
#0 : Base
BLOCK TABLE VAR TABLE TYPETABLE
0/0 factorial 0/0 default
0/2 071 0/0 0/1 main 0/1 signed char
072 printf 072 signed long
073 signed short
BLOCK VAR TABLE 0/4 () ret. O
#1 prin 1w .. Of3 () ret. 012
1/1 70 0/6 near ptr of 0/1
BLOCK
#2 factorial QUAD TABLE
20 !
h 2/1 retum
22 -
l 2/3 push
CODE TABLE 2/4 call
TYPE TABLE VAR TABLE 200 sequence 2/7 25 ¢
2/0 long const = 1 2/0 i, of type 0/2] 2/1 sequence 2/6 retum
2/1 long const = 1 273, 24 277 if
BLOCK
#3 main v i QUAD TABLE
TYPE TABLE CODE TABLE ;:? 5::’
3/0 long constant = 10 300 sequence 372 push
3/0 string constant = 3/2. 33, 3/4 372 push
"the factorial of 10 iz %ldn" 3/1 sequence 3/; 5:"
30, 31
Block Index
Ig# Level Nage
o o external Block # 0 extemal (Level:0)
i1 printf bl_type: BT_BASE, bl_retum: <no retum types,
2 1 factorial bl_parent: <no parent>
301 main
TBL_TYPE (used 89 entries) of OT_TYPE
Note: 'I' after Size - full access requires far pointer,
Name Class Size Reference
o/ 0 default TY_ALIAS 2 of TBL TYPE (y 2
ot signed char TY_CHAR 1
0o/ 2 signed long TY _LONG 4
o/ 3 signed short TY_SHORT 2
0/ 4 () retuming TY_FUNC 2 TBL TYPE /0 ()
o5 () retuming TY_FUNC 4 TBL TYPE /2 ()
0/ 6 int TY_ALIAS 2 of TBLL TYPE 0/ 0
o/ 7 near pointer TY_NEAR 4 to TBL._TYPF 0/ | nearAolatile
TBL_VAR (used 3M entries) of OT_SYMBOL
Ig# Name Usage Type Atpibutes Refereixes
0/ 0 factorial US_DECL. 0/ S
o/ 1 main US_DECT. 0/ 4
o2 printf US_DECL 0/ 4

M
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DL Representation Example

TBL_BLOCK (used 3/9 entries) of OT_BLOCK

Block # | printf (Level:l)
bi_type: BT_PROTO, bi_retumn: default, bl_parent: external

~a

TBL_VAR  (used 2/9 entries) of OT_SYMBOL

Block # 3 main (Level:1)
bi_type: BT_FUNC, bl_retum: default,
- bl_parent: external

< TBL_TYPE (used 2/9 entries) of OT_TYPE
) Note: '’ after Size - full access requires far pointer.
L Name Class Size Refercnces
— 3/0 long constant TY_CONST 4 Value: 10
- /1 string constant TY_CONST 29 Value: "the factorial of 10 is: %ld\n"

TBL_CODE (used 3/ entries) of OT_CODE

.. Io#
. /o 323/33/4
L 31 3403/ 1
¥
- TBL_QUAD (used 5/9 entries) of OT_QUAD
s I  Operation Left Right Third
o~ 3/0  push TBL_TYPE o/ 0 TBL_TYPE 3/0 < none >
A waming, sutomatic cast to result type, left side resolved via TBL_TYPE alias(es): 0/ 0
'S 3/1  call TBL_VAR o/ 0 < none > < none >
' 3/2  push TBL_TYPE o/ 7 TBL_TYPE 31 < none >
S 3/3 push TBL_CODE 31 TBL CODE 31 < none >
3/4 call TBL_VAR 0/ 2 < none > < none >
waming, left side resolved via TBL_TYPE alias(es): 0/ O
- -
‘
. V.,
.
A S LN el

. ™™ Name Usage Type Atufbutes/Relcrences
P 1/ 0 US_FPARM 0/0
K ‘= 11 70 US_FPARM o/ 7
¥
-
e Block # 2 factorial (Level: 1)
S bl_type: BT_FUNC, bl_retum: signed long,
bl_parent: external
-~ TBL_TYPE (used 2/9 entries) of OT_TYPE
L. Note: 'I" after Size - full access requires far pointer.
1o# Name Class Size
2/0 long constant TY_CONST 4 Value: 1|
. 21 long constant TY_CONST 4 Value: 1
J ‘\:
) TBL_VAR (used 1/1 entries) of OT_SYMBOL
. 5. Name Usage Type Audbutes/References
) :\. 2/ 0 i US_FPARM 0/2
TBL_CODE (used 2/9 entries) of OT_CODE
. 0.4 Quadruple Sequence
2/0 2/ 7
AN 2/t 2324
3 TBL_QUAD (used 8/9 entries) of OT_QUAD
- ¥ Opemation Left Right Thind Result
. 20 1 TBL_VAR 20  <none> < none > TBL_TYPE
2/1 retum TBL_TYPE 0/ 2 TBL_TYPE 21 < none > TBL_TYPE
- Y2 - TBL_VAR 2/0 TBL_TYPE 2/0 < none > TBL_TYPE
. 2/3 push TBL_TYPE 0/ 0 TBL.QUAD 2/2 < none> TBL_TYPE
Y waming: sutomatic cast to result type, left side resolved via TBL_TYPE alias(es): 0/ 0
LR 24 cal TBL_VAR 0/ 0 < none > < none > TBL_TYPE
A 2/5 » TBL_VAR 2/0 TBLCODE 2/1 < none > TBL_TYPE
: 2/6 retum TBL_TYPE o/ 2 TBL.QUAD 2/5 < none> TBL_TYPE
: 211 i TBL_QUAD 2/0 TBLQUAD 2/1 TBL_QUAD %6 < none >

Result
TBL_TYPE

TBL_TYPE
TBL_TYPE
TBL_TYPE
TBL_TYPE

0/ 0
0/ 2
0/ 2
0/ 3

0/2
0/ 2
0/ 2
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Automati mentation Generation

Blocks of the same lexical level are considered children of the block with the next
lower block level. In this example, the external block is the parent block, and
contains child function blocks printf, factorial, and main.

All blocks contain tables to represent information pertaining to internal
components. For instance, the external block has a type table to represent global
types, a variable table to represent global definitions, and a block table to represent
subsidiary blocks.

In the example, the function block factorial has a type table to represent local
types, a variable table to represent local definitions, a code table to represent the
order in which quadruples are to be executed, and a quadruple table representing
the executable elements of the function.

Type table elements can be described as belonging to any of these sets: simple types,
derived types, and constants. Each type has a unique numerical identifier referring
to block number and element position, a name, a type classification, size required
for each data element of that type, and related information.

A simple type describes a primitive class of data element. DL supplies every simple
type. Types 0/1, 0/2,and 0/3 are simple types, as shown by type classifications
TY_CHAR (primitive for byte length integral scalar data), TY_LONG (primitive
for double word length integral scalar data), and TY_SHORT (primitive for word
length integral scalar data) respectively.

A derived type describes a programmer defined class of data element that is either a
composite or a direct mapping of other existing types accessible from the lexical
level of the programmer's type definition. Type 0/0 is a direct mapping of type 0/3,
hence type default type is an alias of type signed short; the type classification field
is TY_ALIAS to denote this. Type 0/5 is a composite type, any function returning
data of type 0/0 (default) is referenced to the composite type; the type classification
field is TY_FUNC to denote this. Type 0/7 is another composite type, where any
data element describing a double word address of a location, in which a data element
of type 0/1 (signed character) is stored, is referenced to the composite type. The
type classification field is TY_NEAR to denote this.
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LY e

A constant type describes a fixed scalar value that is mentioned as a literal part of ;
the program text, and therefore requires special attention for documentation )

purposes.

- Variable table elements correspond to identifiers in the program that represent >

' starting addresses of data. Each identifier, or variable, is associated to an element e

of a type table accessible from the lexical level of the programmer's variable

N definition. Each variable has a numerical identifier referring to block number and

element position, a name, a variable usage field, the associated type, and related
information.

[
P

The variable usage field is important, since it determines if the variable is declared
within a block (US_DECL) or declared as a formal parameter associated with a
. function block (US_FPARM).

L. Variables 1/0, 1/1, and 2/0 are examples of formal parameters. There are three
S functions that are declared as external block variables, each associated with a
. function block: printf (variable 0/0), factorial (variable 0/1), and main (variable

: . 0/2).

. These functions are considered variables, since a function is represented by a

n o location denoting the starting address of information relating to the executable code
- and data of the function. Notice that in the absence of a type mentioned with a
n variable, the variable takes on type defaulr; this property is exhibited by variables
0/0 and 0/2.

Variable names can have special properties. Variable 1/1 is a case of an unnamed
- formal parameter which was mentioned in the prototypical declaration of function
.« printf. Since DL was not supplied with the name of the first formal parameter, but
{ . only its type, DL creates an identifer for the variable indicating that the name is
L
k
[

:

B T W WD W

unknown. The question mark as the first character of the name indicates an
invented identifier, followed by the number of the invented identifier thus created.
Variable 1/1 is a case of an elliptical formal parameter. An ellipsis (...) tells DL that
zero or more actual parameters in the function call may correspond to the same
relative position in the function definition; a utility useful in describing a function
with an indefinite list of arguments.

denimdindindont ol 20T,
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S SN

Block table elements describe procedural subunits in the program. The external
block is an exception in that no executable code is ever described in it, the other
blocks may have code and data. Shown are two kinds of function blocks: prototype
functions, and complete functions.

s
P
.l AI

L

A prototype function incompletely defines a function. Prototype definitions
require a function name, return type, and formal parameters, so that it can be
referenced by the rest of the program. Notice the return type is default (type 0/0)
since the return type is not mentioned in the prototypical declaration.

Block #1 is an example of a prototype function that is not defined in its entirety by

an applications programmer: printf. In this case the printf function is supplied R
by the operating system environment of the home compiler through a standard D
input/output description library at compile time. We represent it here to DL as a LU
prototype so the program can be documented as using the printf function, and o’
check argument usage.

Blocks #2 and #3 are examples of complete function definitions. A complete
function definition may have a return type, formal parameters, local types, local
variables, and executable code.

»
A

«
.‘A“

3
'
o T

Code table elements describe the order in which groups of quadruples are executed.
A group is a linked list of the bases or roots of expression trees. The first element
of the code table, always #0 in the code table of any block, represents the outermost
level of code body execution. Other elements represent subsidiary sequences. The
quadruples of each sequence are executed left to right.

P I R P
R
Ar's‘-.fi. .

"y .
[

Code element 2/0 indicates that function block factorial is executed by evaluating

the expression tree anchored by quadruple 2/7, the if statement. The other code -
elements indicate sequences involving function evaluation. Each of these sequences ]
may involve zero or more pushes of actual parameters, followed by the call. The 7
push/call sequence is a simulated entry to a routine's activation record, where o
placement of the actual parameters occurs in the left to right order indicated by the 7
function evaluation. ®
=
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Quadruple table elements describe executable code tuples, with an operator, up to
three operands, and a result type. Operands can be any variable, constant type, code
segment, or quadruple accessible from the lexical level of the programmer's usage

of the operator. Expressions and other statements are built from a tree of
quadruples .

Most software presently developed by programmers will compile and execute
despite obvious misuses, abuses, and mismatches of resulting expression evaluation
data types. Some programming languages have what is termed "strong type
checking” to prevent most of these kinds of error from passing the compilation
stage. Many programming languages have checks that are weaker or even non-
existent. Large software systems where routines from different software houses
are reused or combined present a potentially interminable problem of interface
errors. A fair assumption on our part is that these invisible errors eventually lead to

undesireable run-time output under circumstances which are usually unknown until
after the fact.

To highlight potential interface problems, DL performs type checking that is much
stronger than usually warranted for normal programming purposes, so strong that
our term for it is "strict type checking”. Part of strict checking involves noting in
the symbol dump output referencing of all directly mapped derived types (alias
resolution warning), and where warranted implied coercion of non-congruent
expression types even if the types involved are conformal (automatic cast warning).

The result type of a quadruple is available to check the result of an expression, and
to match the types of subexpressions. Quadruples 2/3, 3/0, and 3/4 illustrate
expressions that would have passed not only compilers but also lint class code
validator utilities, that involve aliases and coercions.
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Automatic Documentation Generation

Results

As the example illustrates, retaining all of the details that represent the logic of the
program results in a significant connectivity problem. This problem cannot be
reduced in size, however, without loss of the original intent of the program. The
output generators aiso require different portions of the DL compiler output.
Different degrees of abstraction are possible using the collected information. All
details produced by the DL compiler must be retained for the final documentaion
application. In other words, abstraction is deferred until the output of the
documentation application, and this is a user directed process.

We have identified and resolved the internal representation issues, and are now
investigating appropriate maintenance programmer documentation, generated
from these internal representations. The next steps in these investigations will

determine the applicability and usefulness of the documentation using real world
code.

Four applications currently are under development. The first is a highly
sophisticated and flexible cross referencing system. The second is a Nassi-
Shneiderman generator, primarily for lower level documentation and limited
abstraction. The third application will use action diagrams to provide higher levels
of abstraction, up to the program level. Fourth, pictorial representation of data
structures as an adjunct to the first three documentation generators may prove,
beyond acting as a programmer aid, to provide a useful level of documentation to
non-programmer users of the systems being documented. The utility and feasibility
of interactive systems will also be investigated.
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Appendix A
Review of Documentation Techniques

The following documentation methods were evaluated with a view to their
applicability in the maintenance environment. Each is discussed with its relative
strengths (advantages) and weaknesses (disadvantages).

Pretty Printing

A pretty printer is a stylizer. By reformatting the original program into a
"standard” format, it is possible that misleading indentation (in the original)
can highlight errors. This technique may be quite useful with old, unsightly
source code.

Advantages:

Pretty printing can be implemented for any language. Its
output is in a consistent, indented style for a specific language.
The style reveals the essential elements and structure of code.
The term for this organizational viewpoint 1s lexical scope
highlighting.

Disadvantages:

Every language has different dialects known as standards. A
standard is some set of deviations from the original definition
of the language which serves the convenience of a particular
group of programmers. Of course, the original definition is
also a standard that deviates from all the dialects.

An extreme example of a language with a very large set of
dialects is BASIC. Differing dialects of BASIC exist to control
robots, search and maintain database files, support business
functions and control graphics displays. Worse, several
dialects of BASIC exist for some computers. BASIC is not the
only language that shows these symptoms. Different dialects of
a programming language have different coding styles. A pretty
printer must be re-tailored to every dialect of a language.

A-1
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Appendix A

Warnier-Orr Diagrams “
Warnier-Orr diagramming offers a single technique to show functional w7
decomposition and hierarchical data structures. The techniques's primary e

strength is in the design phase.
Advantages:

Warnier-Orr diagramming is a system that offers a single
technique to show functional decompositions and hierarchical
data structures. The system is modular, allowing the user to
specify a design over multiple levels of detail. This
modularity also makes such a design easier to read, draw, and
change.

Disadvantages:

Warnier-Orr diagrams are a human-oriented communications
system rather than a computer aided program design tool. -
Specific fonts, printing conventions, and even special forms - -
may also be needed. Bottom levels of a large diagram often
degenerate into a form of pseudocode, making the intent of the o
diagram difficult to understand. Warnier-Orr diagrams are '
therefore more suitable for small programs, or high levels of
large programs.

Warnier-Orr diagrams do not help reveal the extent of
coupling and cohesion between modules. Input-output paths
for procedural components are not shown. Conditions and

. P .,
RTEAPIEY RN

variables that control procedural flow are not shown. =
Relationships between procedure and data in a program are :
also not shown. Analysts may have difficulties using a
Warnier-Orr diagram to diagnose program flaws during o
either the design or the maintenance phase. e
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. ‘1 Michael Jackson Diagrams
E 5 Michael Jackson diagrams show data coupling and cohesion. Logic is not
2 represented in this technique, which thus is of limited value.

T Advantages:

Michael Jackson diagrams are similar to Warnier-Orr
diagrams, since the diagramming technique provides
constructs appropriate to structured programming languages.
NS However, the constructs are designed to also show data related
N coupling and cohesion aspects of a program, something that
N Warnier-Orr  have no provision for. The pictorial
NS relationships and structured text within the icons can be
automated, which enable this method to be used for computer
aided program design and maintenance.

Disadvantages:

.. This diagramming technique shows some of the same
weaknesses as Warnier-Orr diagrams. The lowest levels of
detail in a Michael Jackson diagram can degenerate into a form
of pseudocode, thus degrading comprehension. Also, there is
no provision for showing conditions and variables that control

R ! procedural flow.

o

o,

W o Michael Jackson diagrams can become overloaded with detail
= as the programs they describe become more complex.

Regardless of intended program size, the descriptive structures
P - are more wordy than the program it represents. The average
g programmer can become frustrated with representations of
= even a small program using this method.
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Appendix A

Flowcharts

Flowcharts are an elementary technique easily understood by programmers
and non-programmers. The method is fairly reasonable for maintenance,
provided the flowchart is correct. Unless automated, it is very difficult to

MRS 4" bk ol g B g™ MUl LANLANLA LN A A g e gl

maintain accuracy.

Advantages:

Flowcharts enjoy a rich and ancient history. At the dawn of
modern computer science, flowcharts were the only known
method of diagramming program structure. Flowcharting is
an elementary technique of organization which is known to the
general population. It also is the first technique of organization
taught to students in computer literacy or some computer
science courses. They are widely used, and recognized almost
anywhere. At their best, flowcharts are simple, elegant, and
flexible.

Disadvantages:

There is a dark side that has practically condemned
flowcharting as an obsolete technique: flowcharts have an
infinite potential for abuse! Some of the more serious
problems are:

Flowcharting perpetuates the "spaghetti code" approach to
programming, the flow of control is unrestricted and
unstructured. As such, flowcharting is not easily adapted to
structured programming concepts or techniques. Worse, there
are no agreed upon extensions for structured programming
languages.

Flowcharts make it far too easy to confuse high level and low
level operations. A group of interconnected, internally
detailed program modules can become too convoluted to read.
Program logic and program modularity could then be hidden
in a maze of detail. General system overviews are likewise
difficult. Flowcharts encourage the programmers who use
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! them to think in terms of older programming styles,
o exemplified in traditional FORTRAN and assembly language
¢ programming. This slows down the desired trend of more
: :C modern languages becoming acceptable to the community of
: programmers, systems analysts, and managers.
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Flowcharts are not easy to draw. Enough loops or subroutines s
can send the drawing off the paper, to hop between sheets
drawing either jump dots or lines leading off the paper. Once
an agreeable flowchart has been drawn, it is very hard to
modify and still keep the same integrity as the original -
flowchart. Making room on a page for more constructs >
becomes a major chore. '
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§ Pseudocode / Structured English !

Pseudcode, or Structured English, is a narrative form of program logic
which is difficult to produce automatically, and suffers from many of same
problems of standard documentation, if manually generated.

Advantages:

Both these documentation methods behave as a narrator to
actual code. Pseudocode refers to narratives in formal notation ‘
resembling the actual code, yet not as rigorously expressed.

"Structured English" refers to narratives informally styled so
nonprogrammers can immediately understand them. Both

methods can be helpful to depict overall program structure and
architecture.

As an example, a common technique of program design is to
start with a structured English specification of the task to be
performed. Through stepwise refinement, portions of the
specification are given increasing levels of detail until the
specification resembles pseudocode. The pseudocode may then
be acceptable as input to a fourth-generation language
compiler, or the pseudocode can be further refined by the
programmer into code acceptable by any of the compilers for

high level languages, even ultimately refined into code
acceptable by an assembler. '

Disadvantages: 'g

Wrongly used, the advantages of pseudocode or structured T
English become disadvantages. Narratives can become ‘
lengthy, difficult to read, even use obscure language or

terminology. Narratives can contain a structure or content that

requires rote memorization to use effectively. They tend to not

be updated, thereby suffering thc¢ same end as initial

documentation.
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Nassi-Shneiderman Charts

Nassi-Shneiderman charts are a relatively modern replacement for
flowcharts that is easily automated, especially with structured
programming techniques.

Advantages:

Nassi-Shneiderman (N-S) charts were invented to replace
flowcharting and pseudocode with a method that offers a more
organized view of programming, with constructs appropriate
to structured programming languages. This technique is
deliberately designed to be graphically appealing and also easy
to read, leamn, and teach.

Disadvantages:

Like flowcharts, N-S charts are time consuming to draw and
change. This method is best for showing detailed logic only, it
tends to have problems when trying to coordinate the execution
of many programs. N-S charts are procedure oriented, not
data oriented. This method has no provision for organizing
data structures, and in general cannot be linked to data models.

It has a further problem with data similar to Warnier-Orr -
diagrams: extensions are needed to show input and output data o
paths between procedures. Cross-checking for some forms of R
coupling is less possible without the extensions, and non-

- n-"n
standardized with them. °
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Action Diagrams

Advantages:

Action diagrams are easily hand drawn, as such they are easy to
teach and learn.

They are easily computerized and as such do not require
hardcopy output forms.

They are well adapted to modern programming techniques.
Action diagrams extend across multiple levels of data structure
and procedure design, provide constructs appropriate to
structured languages, and allow cross-checking of input and
output data paths.

Action diagrams are a good interface with actual programming
languages. Action diagrams can be tailored to a specific fourth
generation language. Graphical relationships in an action
diagram are also decomposable into low level code.

Disadvantages:

Action diagramming is a relatively new and unknown process,
and has not yet gained the degree of acceptance and number of
adherents as older methods have.

Action diagrams were designed specifically to overcome many of the
disadvantages of older techniques. They are not dependent on specialized
output devices, and can be superimposed on the languages under
consideration (especially in connection with a pretty printer).
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HOS Charts

HOS (Higher Order Software) charts guarantee provably correct programs
when no modules external to their immediate control are used. They have a
highly mathematical rule-based orientation, and needs much patience to
learn and use correctly. They are not considered an appropriate mechanism
since most (or all) code was developed "outside” of the HOS environment.

Advantages:

HOS is one of the most mathematically rigorous development
methods ever devised. HOS notation extends over multiple
levels of program design, and binds data and procedures to
each other intrinsically. Therefore HOS is valuable in creating
highly complex specifications with little debugging, in a setting
insensitive to a specific language.

Disadvantages:

HOS is very different from other, more widely known
techniques. It uses a highly mathematical rule based
orientation, requiring much patience to learn and use
correctly. HOS is not easy to use, and can create specifications
more complex than one person can properly manage. This is a
team-oriented tool, useful primarily to any professional analyst
who can understand the potential power of the method.
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Cross Reference Listings

An adequate cross reference listing with derived information can provide

the programmer with a quick method of determining where to look for
changes to variables of interest.
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Appendix B

Operating System Level Organization

The parser/documenter executes in two phases:

In the first phase (Figure B-1), the documentation pre-processor (dpp) converts the
raw source code into a file containing two major classes of information:

The first class of information is preprocessed source code, expressed
in documentation language. The second class of information is an
augmented overload matrix of operators. The standard overload
matrix of operators for documentation language is combined with

additional overloaded operators that are present in the source code
and recognized by the preprocessor.

The parser/documentor converts the pre-processor output into an intermediate data
file containing the entire meaning of the raw source code (complete semantics).
The intermediate datafile is machine readable, and human checkable.

Preprocessed source Intermediate data file

nw
I Language overload matrix

The second phase (Figure B-2) uses the intermediate data file as input to an
application, creating a user-readable output.

Figure B-2

Figure B-1

Available applications include: Symbol Table Dump, Cross Reference Generator,
Source Code Pretty Printer, and the Nassi-Shneidermann Diagrammer.

5
B-1 !




Appendix C
Symbol Table

Block Level Organization

The parser/documentor converts major program units into subsidary symbol
tables, called blocks. All blocks have the same general structure, and have specific
information related to the specialized purpose of each block. Figure C-1 shows the
general organization of a block.

All symbol tables have an external block. The external block anchors the entire
symbol table as a base pointer, and contains the primitive type definitions, such as
integer, long, float, character, and so on. The external block contains the external
definitions (type, variable, enumerator, aggregate) and anchors the first-level
program units.

Program units are either compound statements (nameless function blocks), or
functions (named function blocks). A function block is a compound statement with
additional name, return type, and parameter information associated with the
function declaration.

BLOCK ORGANIZATION
external
block
compound function
statement
block block
o o)
1% o}
) e)
compound function
statement
block block
{
|
Figure C-1
{
C-1 :
A e S e
" ﬂ"i:&::‘h~n \.\( ..“l"\. .\.\-‘i‘;.';.‘n.:;‘nln“'h_l 8 g )._24 " A“.AAJJJ_.' AN AEAL A W . v




Appendix C -

Block Internal Detail -- Block Operand .

Each block contains a set of data and pointer fields. The data fields specify
the block's serial number, name, block type (e.g., compound statement, or
function), and lexical level. Figure C-2 shows the relationships between data
and pointer fields in blocks and between a block and other data structures.

o,

The pointer fields link blocks to their parent blocks, return types, lists of
formal parameters, and definitions tables. The definitions table is a table of
pointers to tables of definitions. The blocks table links a block to the
corresponding subsidiary blocks. The other tables link this block to each
defined operand pertaining to this block.

Definitions include code segment operands, symbol operands (members, ~
variables, enumerators, enumerations, structs, unions), type operands (type
definitions), and reference operands (reference definitions), as well as block
operands (block linkages).

The return type linkage is a link to a type operand, the formal parameters list
linkage is a link to a list of symbol operands, and the parent block linkage is a
link to a block operand.

block name s
block type
block level

Formal Formal L
parameter 000 ~ parameter N

' o
BLOCK J' s

B
INTERNAL — locks 3@%
DETAIL e segments nions
Members Type defns
Enumerators References

Enumerations Varniables

Figure C-2 .

..............................................................
................................................
.........................................................................



Symbol Table

Symbol Operand

.

The symbol operand, represented in Figure C-3, is used to represent
variables, members, aggregate and enumerator tags, and enumerations. The
operand class specifies either a member, or a symbol. The usage class
specifies a formal parameter, or other declaration. The parameter number
denotes the order of the parameter in a function block's declaration list.
Other data fields indicate the symbol's name, size, and storage class
attributes.

The symbol always has a link to a type operand of some kind, to denote the
type declaration of the symbol. Variables and members may have an initial
value as indicated by an optional initializer. Enumerations have an ordinal
value. Either of these values may be specified via the symbol's value
operand.

Aggegrate and enumerator tags have an owner link. The owner link is a type
operand that connects the aggregate or enumerator tag to other symbols that
may require the tag as a type definition.

symbol's L symbol's |
owner link type

operand class

name
size

parameter #

usage class

attributes

l symbol's
value

Figure C-3

C-3
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e

Type Operand r

The type operand, represented in Figure C-4, is the most general purpose _
operand in the entire symbol table. The type operand serves a number of D¢
purposes, depending on the type variant being used. Any primitive type has
no variant. All types have a link to their parent blocks. A type may have a
table of references. The type has data fields corresponding to the operand
class (type operand), name, storage class attributes, and size.

iy
X

a0

Parent Block References

operand type “

name
type class
attributes ‘
’ ~

size

type variant

Figure C-4

The type variant in use depends on how the type operand is utilized. Near,

far, function, array, and alias variants all have pointers to a subsidiary type,

but the array variant also has high and low bound data fields. Aggregate and o
enumerator variants have an index to the member table in the same block,
and the number of entries starting with that index.

The link variant serves as a connective element by linking the structure,
union, and enumerator tag to any type using the link as a subsidiary type, and
any symbol using the link as the symbol's type. The compiler variant serves
as a temporary type, an intermediate result brought up from lower to higher
production rules. The label variant serves as a statement label, and refers to
a code operand. -

T
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Symbol Table

Value Operand

The purpose of the value operand, represented in Figure C-5, is to hold
initial values. The operand class is value operand. The value class indicates
which value variant is in use. Value variants are structures that hold
constants. Examples of simple constants are the integer, character, floating
point number, or string.

operand class
value class

value variant

Figure C-5

Reference Operand

The function of the reference operand, represented in Figure C-6, is
to hold reference information for any identifier. The operand class is
reference operand. The file reference and line reference indicates
the file and line in which the identifier was mentioned, the usage type
indicates the context in which the identfier was mentioned for that file
and line.

operand class

file reference

line reference
usage type

Figure C-6
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Appendix C -

Code Segment Operand -

The purpose of the code segments operand, represented in Figure C-7, is to
store quadruples of executable code in a linear array. The linear array
represents the order in which the quadruples are to be executed. The ™
operand class is code operand. There is a field for the number of

quadruples in the array, and then the quadruple table, which is a pointer to
the first quadruple in the array.

A RrRrY < sh LIRS rite {4 LSS TN it

operand class
of quadruples
quadruple table [—Y _quadnple  [OOO| quadnple |

Figure C-7

Quadruple Operand

The function of the quadruple operand, represented in Figure C-8, is
to store a unit of executable code. The operand class is quadruple
operand. There is a field to indicate the operator, and pointer fields

~

for up to three operands to be affected by the operator. These three h

operands can operands of any class. Hence value operands serve to -,

hold constants, quadruples serve as intermediate expressions, code
segments serve as statements or as actual parameter lists.

fn.

4 operand class -

' operator AR
first operand -
cond operand
third operand

_ )

Figure C-8 }
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' Symbol Table
. Symbol Table Example
. Consider the external declaration statement “register int i". It parses into
< the structure shown in Figure C-9. The external block has all the primitive
~ types, including "int". The first level block is the external block, so "i" is a
- symbol operand in the variable table of the external block. "i" points back to
b the "int" primitive type.
register int i;

:: —Iextemal block l——
.' L
¥ int 1 i ]

char
:-I o
2 o

O
- l float ]
- type table variable table
i Figure C-9
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:l.‘ ;

-4 F

| A

| The primitive type, "int" in the example shown in Figure C-10, is a type

| operand named "int" with: no type variant (because it is a primitive type), o
subsidary type of integer, a size of 4 bytes, and has signed, long, and integer L

attributes. The parent block of "int" is the external block. "int" has no I
references (being a program keyword) and the null pointer indicates that. o
external block A 7'_
| o
» 7
’ no references .
| type operand o
} “int" Vo
integer class A

} attributes: RO

integer

‘ signed »
| long -
| 4 bytes 3 :'_'.
| no -
’ type variant -
Figure C-10
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Symbol Table

The variable "i", in Figure C-11, is a symbol operand named "i" with: no
owner link (because it is not a member of an aggregate or an enumeration of
an enumerator), the symbol's usage is declared, no initial value, type "int"
(pointer to that type is present), and the same attributes as type "int" but also
with the register attribute. The parameter number was set to zero, but this
fact is irrelevant since the symbol is not used as a parameter.

no owner link

/777

symbol operand

[

1

"int"

parameter #0

usage: declared

attnibutes:
integer
signed
long
register

no initial value

Figure C-11
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Appendix D

Documentation Language Flowgraphs

Appendix D shows graphical representations of the Documentation Language mentioned in the
main body of this report. The style shown here, frequently refered to as a railroad diagram,
indicates the order of acceptance of identifiers, punctuation, and keywords by the language via a
top-down series of productions. A production indicates how a series of parsed symbols becomes
another production. The series of parsed symbols is accepted in the order indicated by the
production’s flowgraph. The information is then transformed into a data structure, which is carried
by the resultant production.

—}—( ONE OR MORE INSTANCES )_)— \
rule (object type)
< —7 etvpe

rule (object type) becomes ONE OR MORE INSTANCES

In the above example, the symbols comprising one or more instances of "something" is
transformed into an object type carried by the production rule. Flow of control generally
proceeds in the direction indicated by the arrows. The large arrow indicates that a transformation
has taken place, with the abstraction on the left indicating what symbol or symbols were involved,
and the abstraction on the right indicating the result of the tranformation. The phrase invoking the
word "becomes” indicates the specific nature of the tranformation, which usually is by assignment
but may be the result of a function call.

Supplemental Legend

NON-TERMINAL ——-—( internal action as needed j

( TERMINAL ) @ pubctuation terminal

— > —

OPTIONAL INSTANCE

OPTION A 2

OPTIONB

OPTION C
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l\.
—4 external definition list (list) }—— 14 : file (list) .

(not yet implemented)

file becomes external declaration list -
L]
l‘:.
. el . Q
external definition (list) ‘ ————p  cxtemal definition list (st .
(not yet implemented) -
< .
external definition list becomes: ,
one extemal definition : external definition o
more than one : concatenation (catlst)
of external definition
to external definition list
-
function prototype > > p
‘ \ (opnd) (not yet implemented)| external definition becomes [ i
function prototype s
lI definitionl (list) extemnal definition bccames s :
definition| e
\ [ - . —1 / T
def.nition2 (list) 1 external definition becomes .
definition2 o
definiti i —?—j - :
'I null wition (list) external definition becmes
null definition L. _
— external definition (I;st) -
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declaration specifiers (type)

Documentation Language Flowgraphs

pop DCOR from private
state stack (p_pop)

declarator2 (tree)
( declarator] (tree)

declarator list (list)

G

definition! activates by side-effect

p_declare (
declaration specifiers
s p_define (
p_dchain (
declarator2
, declaratorl
)
)
, declarator list
)

declaration specifiers (type)

—

(i ) —>

4
ﬁ

(this conversion is used as a side-effect)

definition! (list)

declarator? (tree)

pop DCOR from private
state stack (p_pop)

declarator] (tree)

definition2 activates by side-effect
p_declare (
declaration specifiers
. p_define (
p_dchain (
declarator2
, declaratorl
)
)
. NULL (no declarator list)
)

declaration specifiers (type)

—

—— definition2 (list)

(this conversion is used as a side-effect)

null definition becomes
nulldcl (declaration specifiers)
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null definition (list)
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___{ declaration spec list (type) . E
declaration specifiers becomes declaration spec list secaration specifcrs (type) F:“: :
_7 [

T’r declaration spec (type) __j—.

declarat list (t
declaration spec list becomes: — eclaration spec list (type) .
one declaration spec : declaration spec ,.::
more than one : p.atrchk ( A

declaration spec
, declaration spec list -
) -
(merge declaration specs if possible)

{ struct spec (type)

- 1
declaration spec becomes struct spec l )
\ o
TYPEDEF )

declaration spec becomes p_tamark (TA_TYPEDEF) .: :
( set TYPEDEEF attribute flag) -,

— . o
—_— declaration spec (type) N

—f —

parameter spec (type) —)-
struct spec becomes parameter specj - =
A T

)

complex type definition (type)

struct spec becomes complex type definition

R

—_—
— struct spec (type)
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X Documentation Language Flowgraphs

N
) ﬁ storage class specifier (type) > —» i
' parameter spec becomes storage class specifier
v type specifier (type)
parameter spec become type specifier
complex type specifier (type)
- parameter spec becomes complex type specifier
R
- : parameter spec (type)
N
S

M *’ ’
,: AUTO storage class specifier becomes [

p_tamark (TA_AUTO) (set AUTO attribute)

A CONST storage class specifier becomes

p_tamark (TA_CONST) (set CONST attribute)

DL EXTERN storage class specifier becomes

tt

- p_tamark (TA_EXTERN) (set EXTERN attribute)
SIGNED , ——/
, storage class specifier becomes
. p_tamark (TA_SIGNED) (set SIGNED attribute)
STATIC : , —
storage c'ass specifier becomes
' ::4 p_tamark (TA_STATIC) (set STATIC attribute)
- REGISTER storage class specifier becomes

p_tamark (TA_REGISTER)

x (set REGISTER attribute)
oot UNSIGNED .

storage class specifier becomes

- p_tamark (TA_UNSIGNED)
; ..:_ ;—G (set UNSIGNED aftribute)

A VOLATILE -

- storage class specifier becomes
p_tamark (TA_VOLATILE)
(set VOLATILE attribute)

Lt

—
4

storage class specifier (type)
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T———ﬂ CHAR ; > > —-
type specifier becomes ( . u
p_tsmark (TA_CHAR) (set CHAR attribute) - ;

SHORT - 4’_.) " ;
type specifier becomes t .
p_tsmark (TA_SHORT) (set SHORT attribute) DI )

A

()
type specifier becomes

p_tsmark (TA_INT) (set INT attribute)

LONG
type specifier becomes - M

p_tsmark (TA_LONG) (set LONG attribute)

FLOAT
type specifier becomes

L1

t

p_tsmark (TA_FLOAT) (set FLOAT attribute) o
DOUBLE >/ N
type specifier becomes o

p_tsmark (TA_DOUBLE) (set DOUBLE attribute) ‘NN

‘.‘
yom 4’_J

type specifier becomes =
p_tsmark (TA_VOID) (set VOID attribute) -

-

—A type specifier (type) ;
ﬂ

v 1

L
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A
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._1———-4 struct or union (table type) . P

complex type specifier e

becomes p_agmark oo

(( IDENTIFIER (struct or union, IDENTIFIER) -
4" ( ’ . .: .:-
——( ENUM »
complex type specifier o

IDENTIFIER becomes p_enmark A
(ENUM, IDENTIFIER) ;-_
*J f.:!
: '\'
K——-qr typedef name (type) ﬂ’_/ ..;
complex type specifier oA
becomes p_tdmark o :-‘;
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Documentation Language Flowgraphs

STRUCT

TBL_AGG (select struct table)

UNION

N >
J struct or union becomes

A

J

struct or union becomes
TBL_UNION (select union table)

g
Y 4

struct or union (table type)

TYPENAME )} >
typedef name becomes

TYPENAME

l

T=—) typedef name (type)

o i denti . p_agmark (struct or union,
optional identifier (string) optional identifier),

struct definition list)

struct definition list (list) {P —p- > >

ush STRUCT signal
on private state stack

_push

struct or union (table type) complex type definition becomes
p_aginst (struct or union,

op STRUCT signal from private
state stack (p_pop), sweep local
type table for functions returning
ggregate (p_fnsweep)

L__,( ENUM
complex type definition becomes

p_enmdcl (optional identifier,
enumerator list)

enumerator list (list) $@ » y,

A
-7

optional identifier (string)

complex type definition (type)
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struct definition (list)

f

struct definition list (list)
ﬂ

struct definition list becomes:
one struct definition : struct definition
more than one : concatenation (catlst)
struct definition
to struct definition list

struct function prototype
(not yet implemented) struct definition becomes

struct function prototype

parm definition (opnd)

struct definition become
parm definition

struct null definition (opnd) —
(op struct definition becomes

struct null definition

—
B 4

struct definition (list)

struct definition 1 (list)

pamm definition becomes
struct definition 1

struct definition2 (opnd)

parm definition becomes
struct definition2

é
B 4

parm definition (list)




__4 struct specifiers (type)
declarator2 (tree)
( declaratorl (tree)

( declarator list (list)

pop DCOR from private
state stack (p_pop)

struct definitionl becomes
p_declare (
struct specifiers
, p_define (
p_dchain (
declarator2
, declaratorl
)
)
, declarator list

)

___.{ struct specifiers (type)

declarator] (tree)

(i —

— struct definition! (list)

> pop DCOR from private
declarator2 (tree) _Gmu stack (p_pop)

struct definition2 becomes
p_declare (
struct specifiers
, p_define (
p_dchain (
declarator2
, declaratorl
)
)
., NULL (no declarator list)
)

() >

struct definition2 (list)
ﬁ

>

—4 struct specifiers (type)

struct null definition becomes
nulldel (struct specifiers)

—"; null definition (list)
ﬁ

______.4 struct spec list (type) —)

struct specifiers becomes struct spec list

struct specifiers (type)




o

'~

Pt Ut S SN

[ R S

struct spec (type)

<

struct spec list becomes:
one struct spec
more than one

struct spec

p_atrchk ( struct spec

A

struct spec list (type)

, struct spec list

)

(merge struct specs if possible)

enumerator (opnd)

-

(e
enumerator list becomes:

one enumerator : p_list (no list, enumerator)
create single element list
: p_list (enumerator list,
enumerator)

more than one

create multiple element list

enumerator constant (opnd)

4
R 4

enumerator list (list)

enumerator constant (opnd)

constant expression (opnd)
(not yet implemented)

enumerator becomes
p_enmval (enumerator constant,
no constant expression)

enumerator becomes
p_enmval (enumerator constant,
constant expression)

IDENTIFIER

Q
— 4

enumerator (opnd)

—

enumerator becomes
p_maken (IDENTIFIER)
(create enumerator operand)
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enumerator (opnd)
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Documentation Language Flowgraphs

y s

~, pop DCOR from pr;ivate
:-I state stack (p_pop)
declarator list becomes: —y declarator list (list)
» one declaration : p_list (no declarator list,
~ p_define (declarator))

(create single clement list of declarator)
more than one : p_list (declarator list,
p_define (declarator))
N (create multiple element list of declarator)

p_dchain (declarator2, declaratorl)
declaratorl (tree) (combine trees into an operand)

: ﬂ declarator2 (tree) declarator becomes

>
b -
N A
declarator (opnd)
D) declarator3 (tree) declarator] becomes
- p_dinit (declarator3,
- TN . optional initialization)
. t t L
(‘ optional initialization (init) (combine tree with initializer)
A ’
. I J
.‘_j optional initialization (init) -

declarator] becomes

p_dinit (no declarator3,
AR optional initialization)
(transform initializer into tree)

é
N 4

declaratori (tree)

T
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q declaratord (tree) ( -» o~
] decl
push DCOR on private ec‘:iaratorZ be(fomesd 1 4
te stack (p push) p_dcor (no pointer, declaratord) F‘\. :
la (create tree without pointer) )':'
pointer (list) x:
[l
declaratord (tree) -
T declarator2 becomes )
p_dcor (pointer, declaratord) -
push DCOR on private (create tree with pointer) -
state stack (p push)
y, =
— declarator2 (tree)
ﬁ ..‘,
{ array series (list) . — P .
declarator3 becomes p_darray (amray series) -
P | type parms (list) (cn:a_ti’may tree) f‘.J
{not yet implemented) declarator3 becomes p_dfunct (type parms) '
\ l name parms (list) (creat_e’funclion tree) .
t t i L
{aot yet implemented) declarator3 becomes p_dfunct (name parms) B
9 C( O(crcat_e’ function tree) X
) declarator3 becomes p_dfunct (no parameters) "r'_
(create function tree) -
|
| — declarator3 (tree) Cw i
[ —7 ..\' ;
N\ S
( IDENTIFIER ) declarator4 becomes > »

p_dident (IDENTIFIER)

. ‘ (identifier tree) .
declarator. ’G ~
) declarator4d becomes .

p_dparen (declarator$) .
(create parenthesized expression tree)

— declaratord (tree) "-'
— o~
-

JAN

NG

'

g
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Documentation Language Flowgraphs

declarator6 (tree)

———

declaratorS becomes

declarator3 (tree)

} p_dchain (declarator6,
p_dinit (declarator3,

no initialization)

)

pop DCOR from private
state stack (p_pop)

) (combine trees)

>

declarator6 (tree)

\_,I

—

declaratorS becomes

pop DCOR from private
state stack (p_pop)

no tree)

) p_dchain (declarator6,

(convert tree to form compatible
for declarator4)

—
= 7

declaratorS (tree)

4 declaratord (me)

push DCOR on private
state stack (p_push)

declarator6 becomes
p_dcor (no pointer, declarator4)
(create tree without pointer)

pointer (list)

declaratord (tree)

b

push DCOR on private
state stack (p_push)

declarator6 becomes
p_dcor (pointer. declaratord)
(create trec with pointer)

> J

é
T 4

declarator6 (tree)




otas limited
(clase) specifier (uttr) j >

—e

é

pointer becomes: L

one iteration : p_list (no pointer,
p_star (star,

limited specifier)
)

(create single clement list of pointer)
more than one : p_list (pointer,
p_star (star,
limited specifier)

)
(create multiple element list of pointer)

20 -
star becomes TY_NEAR

(velect near type class)

- pem—ryY.

(select near type class)

-+ rar ) 4@
star becomes TY_FAR

(seloct far type class)

A
-

star (clase)

limited specifier becomes
TA_NONE (select null attribute) -
CONST .
limited specifier becomes
TA_CONST (sclect CONST attribute)

VOLATILE limited specifier becomes

TA_VOLATILE (select VOLATILE attribute)
;; limited specifier (attr)

A

.
s

»
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M
) ﬁ
o
|
N
A
L ]
-
-
-
'
a
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.
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A |

h e el
Al S

n n ow

array entry (init) —j—'
<
array serics becomes:

one array entry : p_list (no array series,

array entry) S ) )
(create single element list of array entry) 4 array series {list)
more than one : p_list (array series,

array entry)

(create multiple element list of array entry)

optional constant
expression (opnd) .(: ) >
array entry becomes

p_dbound (optional constant expression)

(create array bounds operand) — array entry (init)
ﬁ

- —p— » .
optional identifier becomes null string
\. ,( Y
IDENTIFIER ) ‘

optional identifier becomes IDENTIFIER

..
I 4

> »
optional initialization becomes null initializer
initialization
(not yet implemented)

optional initialization becomes initialization

optional identifier (string)

—

optional initialization (init)

» » '
optional constant expression becomes null i
operand
constant expression
(not yet implemented) optional constant expression becomes constant
expression
optional constant expression (opnd)
D'15 ]
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Appendix E

Compiler Data Structures

Operand Identification Structure — Opnd

op_ty

ob_blid :
op_tbl :

op_ntry :

operand type (OT_BLOCK, OT_CODE, OT_LIST,
OT_MEM, OT_INIT, OT_QUAD, OT_REF,
OT_SYMBOL, OT_TABLE, OT_TYPE, OT_VAL)
owner block identification (int)

owner table type (TBL_AGG, TBL_BLOCK,
TBL_CODE, TBL_ENUM, TBL_ENUMERATOR,
TBL_MEM, TBL_TYPE, TBL_UNION, TBL_VAR)
entry number in table (int)

op_ty
op_blid
op_tbl

op_ntry

All operands (Block, Code, List, Member, Initializer, Quadrupi«, Reference,
Symbol, Table, Type, and Value) have an operand identification structurethat
essentially causes each operand to behave like tagged storage. The operand
identification structure is a tag that allows the Documentation Language routines to
determine the operand type, owner block number, owner table type, and entry
number for the purposes of selection, decision, and verification. In some modules,
the operands are visible only by these tags, and the operand type needs to be
determined before individual data elements can be accessed. In other modules, the
operands are visible by the individual operand type structure; to determine what

information exists in the tag the operand can be coerced (cast) into the operand
identification structure.

................................
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Linked list structure operand — List 4
li_ty . variant indicator (LI_OPND, LI_HEAD, I.I_ TBL)
li_next :  pointer to next list structure -
li_kind . li_opnd :  pointer to single operand Ny
1i_kind . li_last :  pointer to findal list structure '
li_kind . li_tab :  multiple operand variant -
e li_kind . li_tab .li_ntry : number of operands (int) -
:: li_kind . li_tab . li_start : pointer to first operand

."————Dl List I

i_kind . li_last Tty =
op_blid LI_HEAD
op_tbl li_next

List head variant

>~
OT_LIST i_kind . li_opnd § li_ty
op_blid ® LI_OPND
op_tbl li_next a
xR
Opnd =
Single operand List variant v
~
OT LIST [ knd . Gtab | ity
op_blid i_ntry LI_TBL
op_tbl li_next o
op_ntry li_start @ .
L 4 {
¢looo "
!
R
Opnd Opnd j
{
Multiple operand List variant -
o
The variants of the linked list structure operand work together to form linked lists. ij X
A linked list always starts with a list head variant. Following are a mixed series of R
single or multiple operand variants. The field /i_kind.li_last always points to the o
final list structure operand in the list. The multiple operand variant uses a double ' '
pointer sequence to access a linear series of operands. An example of a linked list is T
shown on the next page. e
E-2 '
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Example of linked list using List structure operands

i_kind . li_last
[ OT LIST | ® li_ty
op_blid LI HEAD
op_tbl li_next
op_ntry [ J

—— (T ]

] li_ty
op_bli i_kind . li_opnd LI OPND
op_tbl li_next
op_ntry [ ]

] li_kind . li_tab li_ty
op_blid li_ntry LI_TBL
op_tbl li_next
op_ntry li_start ® *_*Oﬂd_l
9
o)
3}—»o
4 O
P .lOpnd I

li_ty
op_blid i_kind . li_opnd | L OPND
op_tbl li_next
op_ntry ’
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Sequence is: list head, single operand, multiple operand, single operand.
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! Type Operand Structure — Type

ty_kind.ty_agg.ty_start

_kind.ty_agg.ty_entries

Block Table
R T T
<,
- | Gl—bllg’dlg ty_parent [ ty_ref [ ty_kind . ty_agg
op_bli
op_tol ty_class ty_name ty_stu"t
op_ntry TY_AGG ty_attrs ty_entries
ty_size
Struct Type Variant
-
N
"
! Block | Table
~, B Y '
S
-
| ULBlegd‘E ty_parent ty_vef ® ty_kind . ty_agg
- op_
RO op_thl ty_class ty_name ty_"“lt
: op_ntry TY_UNION ty_attrs ty_entnies
: . ty_size
Union Type Variant
Block Table
o OT_TYPE ty_parent ® ty_ref [ ty_kind . ty_agg
LS op_blid
o op_tbl ty_class ty_name ty_stm.'t
op_ntry TY_ENUM ty_attrs ty_entries
ty_size
Enumeration Type Variant
. j'*: ty_parent parent block of type (to determine lexical scope of type)
e ty_class type class (TY_AGG,TY_UNION, TY_ENUM,TY_NEAR,
v TY_FAR,TY_ARR,TY_FUNCTY_ALIAS TY_LABEL,
4 V. TY_CONST, TY_LINK,TY_YACC)
3 - ty_ref type's reference table
" ty_name name of type (string)
Y . ty_attrs type's attributes (attr)
Y _size size of type (long)
ty_kind.ty_agg table dependent variant (TY_AGG, TY_UNION, TY_ENUM)

position of first entry in relevant table
number of entries in relevant table
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Type Operand Structure (cont.)

ompiler D

(]

Block Table
OT_TYPE ty_parent o ty_ref (] ty_kind . ty_addr
op_blid
op_tbl ty_class ty_name ty_low : UNDEFINED
op_ntry TY_NEAR ty_attrs ty_high : UNDEFINED
ty_size ty_of I
Near Type Variant
Block Table
OT_TYPE ty_parent [ ty_ref [ ty_kind . ty_addr
op_blid
op_tbl ty_class ty_name ty_low : UNDEFINED
op_niry TY_FAR ty_attrs _high : UNDEFINED
ty_size ty_of ’!
4 Type
Far Type Variant
Block Table
OT_TYPE ty_parent [ ty_ref [ ty_kind . ty_addr
op_blid
op_tbl ty_class ty_name ty_low : UNDEFINED
op_ntry TY_FUNC ty_attrs ty_high : UNDEFINED
ty_size ty_of l
Function Tvpe Variant
ty_kind.ty_addr . type dependent vaniant (TY_NEAR, TY_FAR, TY_FUNC, TY_ARR, TY_ALIAS)

ty_kind.ty_addr.ty_low
ty_kind.ty_addr.ty_high

ty_kind.ty_addr.ty_of

: low bound of array subscript (used in TY_ARR)
: high bound of array subscript (used in TY_ARR)

. subsidiary type (type of type)

o
e
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Type Operand Structure (cont.)

>
" PR

S

Block Table

GT_:'Y'PE ty_parent o ty_ref [ ty_kind . ty_addr

op_blid

or;_tbl ty_class ty_name ty_low : UNDEFINED

op_ntry TY_ALIAS ty_attrs _high : UNDEFINED

ty_size ty_of
Aliased Type Variant
Block Table
OL_TYPE ty_parent ® ty_ref ® ty_kind . ty_addr
op_blid
op_tbl ty_class ty_name ty_low
op_ntry TY_ARR ty_attrs ty_high
ty_size ty_of .___4 Table
Array Type Variant
Block Table
OT_TYPE ty_parent [ ty_ref ® ty_kind . ty_label
op_blid
op_tbl ty_class ty_name l ty_lref .:I—m
op_ntry TY_LABEL ty_attrs
ty_size
Label Type Variant
ty_kind.ty_addr type dependent variant (TY_NEAR, TY_FAR, TY_FUNC,

TY_ARR, TY_ALIAS)

low bound of array subscript (used in TY_ARR)
high bound of array subscript (used in TY_ARR)
subsidiary type (type of type)

statement label (TY_LABEL)

label reference operand (opnd)

ty_kind.ty_addr.ty_low
ty_kind.ty_addr.ty_high
ty_kind.ty_addr.ty_of
ty_kind.ty_label
ty_kind.ty_label ty_lref
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Compiler Data Structures

’
Type Operand Structure (cont.)
v'.-
Block Table
'J‘:
he
OT_TYPE ty_parent [ ty_ref [ ty_kind . ty_const
op_blid
op_tol ty_class ty_name 1 ty_val Val
op_ntry TY_CONST ty_attrs <.
ty_size -
Constant Type Variant R
Block Table )
OT_TYPE ty_parent ] ty_ref [ ty_kind . ty_link A
op_blid T
op_tol ty_class ty_name ty_lktype e
op_ntry TY_LINK ty_attrs ty_sylink @=t——pp{ Symbol .
ty_size -
Link Type Variant
Block Table o
3
OT_TYPE ty_parent [ ty_ref [ ty_kind . ty_yacc o
op_blid KO
op_tbl ty _class ty_name Tty_carry ...'—L'UL EPRN
op_ntry TY_YACC ty_attrs
ty_size -
Compiler Type Variant Y
ty_kind.ty_const © constant type variant (TY_CONST) _1
ty_kind.ty_constty_val :  value of constant type )
ty_kind.ty_link :  link type variant (TY_LINK) Lo
ty_kind.ty link.ty_sylink :  symbol link for aggregates and enumerator types oo
ty_kind.ty_link.ty_lktype :  specify which type is tising symbol link - '
(LK_STRUCT, LK_UNION, LK_ENT™M) b
ty_kind.ty_yacc : compiler type variant (TY_YACC) L
ty_kind.ty_yacc.ty_carry @ type being carnied through grammer by compiler type _
<
E-8 )
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3
2
J
.! Symbol Structure Operand — Symbol y
and .
= Member Structure Operand — Mem
A0
Type Table Val
- (e e ) 7]
Q ’ .
OT_SYMBOL} sy_name sy_lktype ‘ sy_ref ‘ sy_val P sy_type .-—'[ Type .
N op_blid 8y_size i
op_tbl sy_parm
.y op_ntry sy_usage
! A sy_attrs
- OT_MEM
.:: op_blid
; op_tbl
op_ntry
\.:, J
- \-
\ sy_name :  symbol name (string)
o sy_size :  symbol size (long)
. sy_parm 1 symbol parameter number (int)
sy_usage :  symbol usage class (US_DECL,US_FPARM)
Sy_attrs :  symbol attributes (attrs)
sy_lk_type ¢ pointer to symbol's owner link
sy_ref :  pointer to symbol's reference table
sy_val :  pointer to symbol's initial value
! sy_type :  pointer to symbols’s type
Y
-
¥ The composition of symbol and mem structure operands is the same, except that :
the operand type field, op_ty, is diff.rent (OT_SYMBOL for symbols, OT_MEM ¥
P = for members). Symbol operands belong in binary searched symbol tables, which
p - are appropriate for random-accessed entities such as struct and union tags, and
" variables. Member operands belong in sequentially searched member tables,
vI

. which are appropriate for sequentially accessed entities such as members of structs
Y : ; 1
and unions, and enumerations within an enumerator type. The Symbol Table

Variant is the Table Structure Operand in which symbol and member operands
>, are stored.
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Value Structure Operand - Val

OT_VAL vl cls vl_const . vl_string
op_blid _ f\1 sTRING
op_tbl -
op_ntry
OT_VAL vl cls vl_const . vl_char
Op_blld VL_CHAR
op_tbl
op_ntry
OI'_V.AL vi_cls vl_const . vl_double
op_blid v pouLe
op_tbl
op_ntry
OT_VAL vl cls vl_const . vl_int
op_blid =
op_tol VL_LONG vl_const.vl_int.vi_long
op_niry vl_const.vl_int.v]l_base

OT_VAL

vl cls vl_const . vl_complex
op_blid | vi compLEx ;
op_tbl - vi_const.vl_int.vl_real
op_ntry vl_const.vl_int.vl_imag
vi_cls :  value class (VL_STRING, VL_LONG, VL_DOUBLE,
VL_CHAR, VL_COMPLEX)
vl_const.v]_string . string value (string)
vl_coanst.vl_char :  char value (long)
vi_const.vl_double :  floating point value (double)
vl_const.vl_int.vl_long :  integer value (long)
vl_const.vl_int.vl_base :  numerical base of integer value
vl_const.vl_complex.vl_real : real component of complex value
vl_const.vl_complex.vl_inag : imaginary component of complex value
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; Initializer Structure Operand - Init

Pl

D '.n' Val

v T
\-l

»

. ﬁ:ﬁr in_val ‘ in_next g | 4 Init
. op_bli -
- .: op_tol in_nval I
a3 op_ntry
in_nval :  number of initializer (int)
v - in_val :  value of this initializer
y in_pext ! pointer to next initializer
-
A Quadruple Structure Operand — Quad
- OI_QUAD 1qd_op | qd_opnd [3]
' Op_blid [0] o Opnd
. op_tbl
S op_ntry (1] @~ Opnd
S 2] @ Opad
: - qd_op 1 quadruple operator (opcode)
- qd_opnd [3] : Up to three pointers to operands
Code Table Structure Operand - Code
s OT_CODE | cd_nquad cd_quad *
3 ‘_‘ op_blid cd_mquad —
. op_tbl +
b op_ntry ®|00O0 |®
§ -;,
5 Quad Quad
: ': od_ :  number of quadruples used in code table
. od_mquad : number of quadruple spaces allocated to code table
N . od_quad :  pointer to first quadruple in code table
y .
d
4 Cary
A
U
]
d .
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Block Structure Operand - Block

Block

Type

|

.....

Compiler Data Structures

[OT_BLOCK T BIid bl_parent @ | bl_return @ | bl_formal @l—p{ L1st
op_blid bl_name Bt 0]
op_tbl 1_type = Tabl
op_ntry bl_locked {0} @19 "*°"®] TBL_AGG (Struct Table)
Bl level (1] @ Table| rpL, BLOCK (Block Table)
(2] 0—-’] Tablel tp1, CODE (Code Table)
(3] .—H Table TBL_ENUM (Enumerated Type Table)
(41 ._..I Table
(5] 0—1-’[ Table| ] MEM (Member Table)
(6] .-“.Lr' ble TBL_REF (Reference Table)
[7] @1 Table| TRI, TYPE (Type Table)
(81 @94 Tablelvp] UNION (Union Table)
191 -DLT'b'e TBL_VAR (Variable Table)
bl_id block identification number (int)
bl_name block name (string)
bl_type block type (BT_NONE, BT_BASE, BT_BLOCK, BT_DATA, BI_FUNC,
BT_PROTO, BT_SUBR)
bl_locked was the block described as a function block with parameters and compound
statement? (True / False)
bl_level lexical level of block (int)
bl_parent pointer to parent block of this block
bl_retum pointer to return type of this block if this block was described as a function
block
bl_formal pointer to formal parameter list of this block if this block was described as
a function block
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3
) Table Structure Operand - Table
‘\‘
o
fu, OT_TABLE [ ta_otyp
e op_blid OT_BLOCK ta_blk o—#{Block |
op_tbl ta_tbl
5 op_ntry ta_ntab ta_tab . ta_block ?
:\: ta_mtab ;
®/00O0 ,
) [Block™]  [Block ]
< .
S Block Table Variant ta_tbl : TBL_BLOCK (1)
;_\
T OT_TABLE ta_otyp ta bik
op_bhid OT_CODE a_ 0—
op_tbl ta_tb]
op_ntry ta_ntab ta_tab . ta_code ?
ta_mtab
. ¢|/ooo |e
. Code Code
- [Code |
L Code Table Variant ta_tbl : TBL_CODE (2)
’ [OT_TABLE ta_otyp ta blk
op_blid OT_REF .- 0—
op_tbl ta_tbl
s op_ntry ta_ntab ta_tab . ta_ref I
;' o ta_miab *
o ¢(coo e
AN
" Ref Ref
N Reference Table Variant ta_tbl : TBL_REF (6)
,
ta_otyp operand type in this table (OT_BLOCK, OT_CODE, OT_REF,
- OT_OPND, OT_SYMBOL, OT_REF)
. ta_tbl specific table in owning block (0 - 9 : see Block Structure Operand)
T ta_ntab number of entries in this table
ta_mtab number of entry spaces alocated to this table
- ta_blk pointer to block owning this table
ta_tab.ta_block pointer to first block entry in block table
ta_tab.ta_code pointer to first code entry in code table
ta_tab.ta_ref pointer to first reference entry in refere'wce table
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Table Structure Operand (cont.)

OT_TABLE ta_otyp ta blk

op_blid UNDEFINED 2 o—/Block |
op_tbl ta_tbl

op_ntry ta_ntab ta_tab . ta_opnd ?

ta_mtab *

?OOO,

[OpndJ E)pnd ]
Operand Table Varant

Note : This variant exists for convieience in compiler internal operations. All Table Variants can be coerced
(cast) into this form for the purpose of accessing the Operand Identification Structures of all elements in that
coerced table.

OT_TABLE ta_otyp blk
op_bhid OT_SYMBOL fa_ 0—
op_tbl ta_tbl
op_ntry ta_ntab ta_tab . (a_symbol ?
ta_mtab ‘
, 00O ?
Symbol Symbol
or Mem or Mem
Symbol Table Variant
: (Symbol ) TBL_AGG (0) TBL_ENUM (3)
TBL_UNION (8) TBL_VAR (9
- (Member) TBL_ENUMERATOR (4) TBL_MEM ¢5)
OT_TABLE ta_olyp b
op_bhid OT_TYPE ta_blk ®{——[Biock |
op_tbl Ta_tbl :
op_ntry ta_ntab tz_tab . 1a_type ?
ta_mtab ;

000

*

|
F Type

}
][]

Type Table Vanant ta_tbl : TBL_TYPE (7)

ta_tab.ta_opnd
ta_tab.ta_symbol
ta_tab.ta_type

pointer to first operand entry in table
pointer to first symbol (member) entry in symbol (member) table
pointer to first type entry in type table

E-14

P P T T i T, S i A T P PR SO, W




092 DOCUMENTATION IN A m m ENVIRONNENT (W)
TECDIICII. sownous INC MESILLR PARK

L!IDIS 28 AUG 87 mo-zzszs 1-€L-S
UNCLASSIFIED omzs w




25
2

22
==

i

b
=i

| 8
Lo

4

L

—

20

|8

16

ol |
Il

[

cree
e I

22 fiie o

LA A A PR
4 1-'*&»

Wt N

Py bt
'

Mic B g

-rdvh-dvv‘fJ M

T

LIRS
e
. -

<

»
'

.-.rx.f Aﬂ-- = Iﬂ.

,v.-v.ﬁ.n-.. o




e W 8 l;.":‘

(N

) _'A

e e we 8 8 &
[N

. \'_\

>

.« & u
.
2%

LN N VL N Y
A

N \‘.

..5.}..

a2

. XA .
B
- -

Appendix E

Stack state structure for private stack — State

State

o

st_signal l
t_next
= - .{ Block
st_declare T prev o—
st_int ?
State
st_signal 1 compiler state signal indicator (Signal)
st_declare :  string storage for declarations (string)
st_int :  general purpose integer (int)
st_block :  pointer to a block for declarations of compound statement, function, or
function prototype
st_next :  Dpext state toward top of stack
st_prev :  previous state toward bottom of stack

The private state stack is a device that allows the Documentation Language compiler
to transmit and receive signals to itself that indicate context-sensitive structures or
other special conditions that require handling. The stack is constructed as a doubly-
linked list, where each element has the ability to temporarily hold general-purpose
information which may be relevant to the compiler when processing the signal or
combination of signals.




Compiler Data ctur

Example of private state stack -

®

[s

AR

SG_FUNC ¢
t_next

w Torev | st_block .——;_7 .
0 S

P

SG_DCOR ~

t_next

" " b
alpha T prev st_block @—
0 -

SG_STRUCT

t_next

"

st_block @—f s::

t_prev

L .

I 3
S

This example indicates that the parser is currently inside an aggregate. The
identifier name "alpha" has been read by the parser. The declaration "alpha” has =
been declared to be a function or function prototype. The top of this diagram

corresponds to the top of stack, which can be accessed by the function p_tos(). The ™
bottom of this diagram corresponds to the bottom of stack, which can be accessed by -
the by the function p_bos(). o
E-16 .

S A e G . TN N AP A PN AR AP A NS R LA I L I ‘,-
Lﬁ.‘:‘.‘::{l{:\'n_(:ﬂ.:l':‘h’:‘l'}f R AT TP A/ :"\l"":.ftt']_.h-u- A.A-‘L-P.A.M f;_A:‘ vttt e e (e




Declarator Tree Structure Elements — Tree

The declarator Tree is a device that allows the Documentation Language compiler
to temporarily store the elements of a declarator in the exact order they were
parsed. This form can be manipulated to enforce the precedence of parenthesis,
arrays, functions, and pointers, or scanned when the compiler needs to make a
decision based on declarator tree elements, such as if the declarator was named or

abstract.

tr_|
tr_decl
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tr_ident
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Tree

Declaration Variant
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Optional List of Pointer Types

tr_ty
TR_IDENT

tr_ident

Identifier Variant

Tree Type (is TR_IDENT)
Identifier name (string)
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